膜连接

Pub Date : 2024-05-25 DOI:10.1093/jigpal/jzae064
J Climent Vidal, E Cosme Llópez
{"title":"膜连接","authors":"J Climent Vidal, E Cosme Llópez","doi":"10.1093/jigpal/jzae064","DOIUrl":null,"url":null,"abstract":"Let $\\varSigma $ be a signature without $0$-ary operation symbols and $\\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$, of inductive systems of $\\varSigma $-algebras over all semilattices, which are ordered pairs $\\mathscr{A}= (\\textbf{I},\\mathscr{A})$ where $\\textbf{I}$ is a semilattice and $\\mathscr{A}$ an inductive system of $\\varSigma $-algebras relative to $\\textbf{I}$, and PłAlg$ (\\varSigma )$, of Płonka $\\varSigma $-algebras, which are ordered pairs $(\\textbf{A},D)$ where $\\textbf{A}$ is a $\\varSigma $-algebra and $D$ a Płonka operator for $\\textbf{A}$, i.e. in the traditional terminology, a partition function for $\\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$ to PłAlg$ (\\varSigma )$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Płonka adjunction\",\"authors\":\"J Climent Vidal, E Cosme Llópez\",\"doi\":\"10.1093/jigpal/jzae064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\varSigma $ be a signature without $0$-ary operation symbols and $\\\\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\\\\int ^{\\\\textsf{Sl}}\\\\textrm{Isys}_{\\\\varSigma }$, of inductive systems of $\\\\varSigma $-algebras over all semilattices, which are ordered pairs $\\\\mathscr{A}= (\\\\textbf{I},\\\\mathscr{A})$ where $\\\\textbf{I}$ is a semilattice and $\\\\mathscr{A}$ an inductive system of $\\\\varSigma $-algebras relative to $\\\\textbf{I}$, and PłAlg$ (\\\\varSigma )$, of Płonka $\\\\varSigma $-algebras, which are ordered pairs $(\\\\textbf{A},D)$ where $\\\\textbf{A}$ is a $\\\\varSigma $-algebra and $D$ a Płonka operator for $\\\\textbf{A}$, i.e. in the traditional terminology, a partition function for $\\\\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\\\\int ^{\\\\textsf{Sl}}\\\\textrm{Isys}_{\\\\varSigma }$ to PłAlg$ (\\\\varSigma )$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\varSigma $ 是一个没有 $0$ary 运算符号的签名,$\textsf{Sl}$ 是半格的范畴。然后,在定义并研究了所有半网格上 $\varSigma $ 算法的归纳系统的类别 $int ^{textsf{Sl}}\textrm{Isys}_{\varSigma }$之后,这些类别是有序对 $\mathscr{A}= (\textbf{I}、\其中 $\textbf{I}$ 是一个半网格,而 $\mathscr{A}$ 是相对于 $\textbf{I}$ 的 $\varSigma $-gebras 的归纳系统,以及 PłAlg$ (\varSigma )$、的 Płonka $\varSigma $-代数,它们是有序的一对 $(\textbf{A},D)$,其中 $\textbf{A}$ 是一个 $\varSigma $-代数,而 $D$ 是 $\textbf{A}$ 的 Płonka 算子,即即用传统术语来说,$\textbf{A}$ 的分割函数,我们证明了本文的主要结果:存在一个从 $int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$ 到 PłAlg$ (\varSigma )$ 的邻接,我们称之为 Płonka 邻接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Płonka adjunction
Let $\varSigma $ be a signature without $0$-ary operation symbols and $\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$, of inductive systems of $\varSigma $-algebras over all semilattices, which are ordered pairs $\mathscr{A}= (\textbf{I},\mathscr{A})$ where $\textbf{I}$ is a semilattice and $\mathscr{A}$ an inductive system of $\varSigma $-algebras relative to $\textbf{I}$, and PłAlg$ (\varSigma )$, of Płonka $\varSigma $-algebras, which are ordered pairs $(\textbf{A},D)$ where $\textbf{A}$ is a $\varSigma $-algebra and $D$ a Płonka operator for $\textbf{A}$, i.e. in the traditional terminology, a partition function for $\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$ to PłAlg$ (\varSigma )$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信