膜连接

IF 0.6 4区 数学 Q2 LOGIC
J Climent Vidal, E Cosme Llópez
{"title":"膜连接","authors":"J Climent Vidal, E Cosme Llópez","doi":"10.1093/jigpal/jzae064","DOIUrl":null,"url":null,"abstract":"Let $\\varSigma $ be a signature without $0$-ary operation symbols and $\\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$, of inductive systems of $\\varSigma $-algebras over all semilattices, which are ordered pairs $\\mathscr{A}= (\\textbf{I},\\mathscr{A})$ where $\\textbf{I}$ is a semilattice and $\\mathscr{A}$ an inductive system of $\\varSigma $-algebras relative to $\\textbf{I}$, and PłAlg$ (\\varSigma )$, of Płonka $\\varSigma $-algebras, which are ordered pairs $(\\textbf{A},D)$ where $\\textbf{A}$ is a $\\varSigma $-algebra and $D$ a Płonka operator for $\\textbf{A}$, i.e. in the traditional terminology, a partition function for $\\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$ to PłAlg$ (\\varSigma )$.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"48 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Płonka adjunction\",\"authors\":\"J Climent Vidal, E Cosme Llópez\",\"doi\":\"10.1093/jigpal/jzae064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\varSigma $ be a signature without $0$-ary operation symbols and $\\\\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\\\\int ^{\\\\textsf{Sl}}\\\\textrm{Isys}_{\\\\varSigma }$, of inductive systems of $\\\\varSigma $-algebras over all semilattices, which are ordered pairs $\\\\mathscr{A}= (\\\\textbf{I},\\\\mathscr{A})$ where $\\\\textbf{I}$ is a semilattice and $\\\\mathscr{A}$ an inductive system of $\\\\varSigma $-algebras relative to $\\\\textbf{I}$, and PłAlg$ (\\\\varSigma )$, of Płonka $\\\\varSigma $-algebras, which are ordered pairs $(\\\\textbf{A},D)$ where $\\\\textbf{A}$ is a $\\\\varSigma $-algebra and $D$ a Płonka operator for $\\\\textbf{A}$, i.e. in the traditional terminology, a partition function for $\\\\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\\\\int ^{\\\\textsf{Sl}}\\\\textrm{Isys}_{\\\\varSigma }$ to PłAlg$ (\\\\varSigma )$.\",\"PeriodicalId\":51114,\"journal\":{\"name\":\"Logic Journal of the IGPL\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Journal of the IGPL\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae064\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

让 $\varSigma $ 是一个没有 $0$ary 运算符号的签名,$\textsf{Sl}$ 是半格的范畴。然后,在定义并研究了所有半网格上 $\varSigma $ 算法的归纳系统的类别 $int ^{textsf{Sl}}\textrm{Isys}_{\varSigma }$之后,这些类别是有序对 $\mathscr{A}= (\textbf{I}、\其中 $\textbf{I}$ 是一个半网格,而 $\mathscr{A}$ 是相对于 $\textbf{I}$ 的 $\varSigma $-gebras 的归纳系统,以及 PłAlg$ (\varSigma )$、的 Płonka $\varSigma $-代数,它们是有序的一对 $(\textbf{A},D)$,其中 $\textbf{A}$ 是一个 $\varSigma $-代数,而 $D$ 是 $\textbf{A}$ 的 Płonka 算子,即即用传统术语来说,$\textbf{A}$ 的分割函数,我们证明了本文的主要结果:存在一个从 $int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$ 到 PłAlg$ (\varSigma )$ 的邻接,我们称之为 Płonka 邻接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Płonka adjunction
Let $\varSigma $ be a signature without $0$-ary operation symbols and $\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$, of inductive systems of $\varSigma $-algebras over all semilattices, which are ordered pairs $\mathscr{A}= (\textbf{I},\mathscr{A})$ where $\textbf{I}$ is a semilattice and $\mathscr{A}$ an inductive system of $\varSigma $-algebras relative to $\textbf{I}$, and PłAlg$ (\varSigma )$, of Płonka $\varSigma $-algebras, which are ordered pairs $(\textbf{A},D)$ where $\textbf{A}$ is a $\varSigma $-algebra and $D$ a Płonka operator for $\textbf{A}$, i.e. in the traditional terminology, a partition function for $\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$ to PłAlg$ (\varSigma )$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
10.00%
发文量
76
审稿时长
6-12 weeks
期刊介绍: Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering. Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信