{"title":"膜连接","authors":"J Climent Vidal, E Cosme Llópez","doi":"10.1093/jigpal/jzae064","DOIUrl":null,"url":null,"abstract":"Let $\\varSigma $ be a signature without $0$-ary operation symbols and $\\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$, of inductive systems of $\\varSigma $-algebras over all semilattices, which are ordered pairs $\\mathscr{A}= (\\textbf{I},\\mathscr{A})$ where $\\textbf{I}$ is a semilattice and $\\mathscr{A}$ an inductive system of $\\varSigma $-algebras relative to $\\textbf{I}$, and PłAlg$ (\\varSigma )$, of Płonka $\\varSigma $-algebras, which are ordered pairs $(\\textbf{A},D)$ where $\\textbf{A}$ is a $\\varSigma $-algebra and $D$ a Płonka operator for $\\textbf{A}$, i.e. in the traditional terminology, a partition function for $\\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$ to PłAlg$ (\\varSigma )$.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"48 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Płonka adjunction\",\"authors\":\"J Climent Vidal, E Cosme Llópez\",\"doi\":\"10.1093/jigpal/jzae064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\varSigma $ be a signature without $0$-ary operation symbols and $\\\\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\\\\int ^{\\\\textsf{Sl}}\\\\textrm{Isys}_{\\\\varSigma }$, of inductive systems of $\\\\varSigma $-algebras over all semilattices, which are ordered pairs $\\\\mathscr{A}= (\\\\textbf{I},\\\\mathscr{A})$ where $\\\\textbf{I}$ is a semilattice and $\\\\mathscr{A}$ an inductive system of $\\\\varSigma $-algebras relative to $\\\\textbf{I}$, and PłAlg$ (\\\\varSigma )$, of Płonka $\\\\varSigma $-algebras, which are ordered pairs $(\\\\textbf{A},D)$ where $\\\\textbf{A}$ is a $\\\\varSigma $-algebra and $D$ a Płonka operator for $\\\\textbf{A}$, i.e. in the traditional terminology, a partition function for $\\\\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\\\\int ^{\\\\textsf{Sl}}\\\\textrm{Isys}_{\\\\varSigma }$ to PłAlg$ (\\\\varSigma )$.\",\"PeriodicalId\":51114,\"journal\":{\"name\":\"Logic Journal of the IGPL\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Journal of the IGPL\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae064\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Let $\varSigma $ be a signature without $0$-ary operation symbols and $\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$, of inductive systems of $\varSigma $-algebras over all semilattices, which are ordered pairs $\mathscr{A}= (\textbf{I},\mathscr{A})$ where $\textbf{I}$ is a semilattice and $\mathscr{A}$ an inductive system of $\varSigma $-algebras relative to $\textbf{I}$, and PłAlg$ (\varSigma )$, of Płonka $\varSigma $-algebras, which are ordered pairs $(\textbf{A},D)$ where $\textbf{A}$ is a $\varSigma $-algebra and $D$ a Płonka operator for $\textbf{A}$, i.e. in the traditional terminology, a partition function for $\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$ to PłAlg$ (\varSigma )$.
期刊介绍:
Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering.
Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.