音频设备神经建模中的用户控制采样

IF 1.7 3区 计算机科学 Q2 ACOUSTICS
Otto Mikkonen, Alec Wright, Vesa Välimäki
{"title":"音频设备神经建模中的用户控制采样","authors":"Otto Mikkonen, Alec Wright, Vesa Välimäki","doi":"10.1186/s13636-024-00347-5","DOIUrl":null,"url":null,"abstract":"This work studies neural modeling of nonlinear parametric audio circuits, focusing on how the diversity of settings of the target device user controls seen during training affects network generalization. To study the problem, a large corpus of training datasets is synthetically generated using SPICE simulations of two distinct devices, an analog equalizer and an analog distortion pedal. A proven recurrent neural network architecture is trained using each dataset. The difference in the datasets is in the sampling resolution of the device user controls and in their overall size. Based on objective and subjective evaluation of the trained models, a sampling resolution of five for the device parameters is found to be sufficient to capture the behavior of the target systems for the types of devices considered during the study. This result is desirable, since a dense sampling grid can be impractical to realize in the general case when no automated way of setting the device parameters is available, while collecting large amounts of data using a sparse grid only incurs small additional costs. Thus, the result provides guidance for efficient collection of training data for neural modeling of other similar audio devices.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"41 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling the user controls in neural modeling of audio devices\",\"authors\":\"Otto Mikkonen, Alec Wright, Vesa Välimäki\",\"doi\":\"10.1186/s13636-024-00347-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies neural modeling of nonlinear parametric audio circuits, focusing on how the diversity of settings of the target device user controls seen during training affects network generalization. To study the problem, a large corpus of training datasets is synthetically generated using SPICE simulations of two distinct devices, an analog equalizer and an analog distortion pedal. A proven recurrent neural network architecture is trained using each dataset. The difference in the datasets is in the sampling resolution of the device user controls and in their overall size. Based on objective and subjective evaluation of the trained models, a sampling resolution of five for the device parameters is found to be sufficient to capture the behavior of the target systems for the types of devices considered during the study. This result is desirable, since a dense sampling grid can be impractical to realize in the general case when no automated way of setting the device parameters is available, while collecting large amounts of data using a sparse grid only incurs small additional costs. Thus, the result provides guidance for efficient collection of training data for neural modeling of other similar audio devices.\",\"PeriodicalId\":49202,\"journal\":{\"name\":\"Eurasip Journal on Audio Speech and Music Processing\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Audio Speech and Music Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13636-024-00347-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Audio Speech and Music Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13636-024-00347-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究的是非线性参数音频电路的神经建模,重点是在训练过程中看到的目标设备用户控制设置的多样性如何影响网络泛化。为了研究这个问题,我们使用两种不同设备(模拟均衡器和模拟失真踏板)的 SPICE 仿真合成了大量训练数据集。使用每个数据集对经过验证的递归神经网络架构进行训练。数据集的不同之处在于设备用户控制的采样分辨率及其总体大小。根据对训练好的模型进行的客观和主观评估,我们发现设备参数的采样分辨率为 5,足以捕捉到研究中考虑的设备类型的目标系统行为。这一结果是可取的,因为在一般情况下,如果没有自动设置设备参数的方法,密集的采样网格是不切实际的,而使用稀疏网格收集大量数据只会产生少量额外成本。因此,该结果为其他类似音频设备的神经建模提供了有效收集训练数据的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling the user controls in neural modeling of audio devices
This work studies neural modeling of nonlinear parametric audio circuits, focusing on how the diversity of settings of the target device user controls seen during training affects network generalization. To study the problem, a large corpus of training datasets is synthetically generated using SPICE simulations of two distinct devices, an analog equalizer and an analog distortion pedal. A proven recurrent neural network architecture is trained using each dataset. The difference in the datasets is in the sampling resolution of the device user controls and in their overall size. Based on objective and subjective evaluation of the trained models, a sampling resolution of five for the device parameters is found to be sufficient to capture the behavior of the target systems for the types of devices considered during the study. This result is desirable, since a dense sampling grid can be impractical to realize in the general case when no automated way of setting the device parameters is available, while collecting large amounts of data using a sparse grid only incurs small additional costs. Thus, the result provides guidance for efficient collection of training data for neural modeling of other similar audio devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasip Journal on Audio Speech and Music Processing
Eurasip Journal on Audio Speech and Music Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.10
自引率
4.20%
发文量
0
审稿时长
12 months
期刊介绍: The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信