边值问题和海森堡唯一性对

IF 1.4 3区 数学 Q1 MATHEMATICS
S. Rigat, F. Wielonsky
{"title":"边值问题和海森堡唯一性对","authors":"S. Rigat,&nbsp;F. Wielonsky","doi":"10.1007/s13324-024-00927-w","DOIUrl":null,"url":null,"abstract":"<div><p>We describe a general method for constructing Heisenberg uniqueness pairs <span>\\((\\Gamma ,\\Lambda )\\)</span> in the euclidean space <span>\\(\\mathbb {R}^{n}\\)</span> based on the study of boundary value problems for partial differential equations. As a result, we show, for instance, that any pair made of the boundary <span>\\(\\Gamma \\)</span> of a bounded convex set <span>\\(\\Omega \\)</span> and a sphere <span>\\(\\Lambda \\)</span> is an Heisenberg uniqueness pair if and only if the square of the radius of <span>\\(\\Lambda \\)</span> is not an eigenvalue of the Laplacian on <span>\\(\\Omega \\)</span>. The main ingredients for the proofs are the Paley–Wiener theorem, the uniqueness of a solution to a homogeneous Dirichlet or initial boundary value problem, the continuity of single layer potentials, and some complex analysis in <span>\\(\\mathbb {C}^{n}\\)</span>. Denjoy’s theorem on topological conjugacy of circle diffeomorphisms with irrational rotation numbers is also useful.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary value problems and Heisenberg uniqueness pairs\",\"authors\":\"S. Rigat,&nbsp;F. Wielonsky\",\"doi\":\"10.1007/s13324-024-00927-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe a general method for constructing Heisenberg uniqueness pairs <span>\\\\((\\\\Gamma ,\\\\Lambda )\\\\)</span> in the euclidean space <span>\\\\(\\\\mathbb {R}^{n}\\\\)</span> based on the study of boundary value problems for partial differential equations. As a result, we show, for instance, that any pair made of the boundary <span>\\\\(\\\\Gamma \\\\)</span> of a bounded convex set <span>\\\\(\\\\Omega \\\\)</span> and a sphere <span>\\\\(\\\\Lambda \\\\)</span> is an Heisenberg uniqueness pair if and only if the square of the radius of <span>\\\\(\\\\Lambda \\\\)</span> is not an eigenvalue of the Laplacian on <span>\\\\(\\\\Omega \\\\)</span>. The main ingredients for the proofs are the Paley–Wiener theorem, the uniqueness of a solution to a homogeneous Dirichlet or initial boundary value problem, the continuity of single layer potentials, and some complex analysis in <span>\\\\(\\\\mathbb {C}^{n}\\\\)</span>. Denjoy’s theorem on topological conjugacy of circle diffeomorphisms with irrational rotation numbers is also useful.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00927-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00927-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

基于对偏微分方程边界值问题的研究,我们描述了在欧几里得空间(mathbb {R}^{n}\) 中构造海森堡唯一性对的一般方法。例如,我们证明了有界凸集\(\Omega \)的边界\(\Gamma \)和球体\(\Lambda \)的边界\(\Gamma \)和球体\(\Lambda \)的边界\(\Lambda \)是一对海森堡唯一性对,当且仅当\(\Lambda \)半径的平方不是\(\Omega \)上拉普拉奇的特征值时。证明的主要内容是帕利-维纳定理、同质迪里夏特问题或初始边界值问题解的唯一性、单层势的连续性以及在 \(\mathbb {C}^{n}\) 中的一些复分析。Denjoy 关于具有无理旋转数的圆差分的拓扑共轭定理也很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boundary value problems and Heisenberg uniqueness pairs

Boundary value problems and Heisenberg uniqueness pairs

Boundary value problems and Heisenberg uniqueness pairs

We describe a general method for constructing Heisenberg uniqueness pairs \((\Gamma ,\Lambda )\) in the euclidean space \(\mathbb {R}^{n}\) based on the study of boundary value problems for partial differential equations. As a result, we show, for instance, that any pair made of the boundary \(\Gamma \) of a bounded convex set \(\Omega \) and a sphere \(\Lambda \) is an Heisenberg uniqueness pair if and only if the square of the radius of \(\Lambda \) is not an eigenvalue of the Laplacian on \(\Omega \). The main ingredients for the proofs are the Paley–Wiener theorem, the uniqueness of a solution to a homogeneous Dirichlet or initial boundary value problem, the continuity of single layer potentials, and some complex analysis in \(\mathbb {C}^{n}\). Denjoy’s theorem on topological conjugacy of circle diffeomorphisms with irrational rotation numbers is also useful.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信