{"title":"N = 1 邦迪-梅兹纳-萨克斯超代数上的光滑模块","authors":"Dong Liu, Yufeng Pei, Limeng Xia, Kaiming Zhao","doi":"10.1142/s0219199724500214","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a determinant formula for a contravariant form on Verma modules over the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> Bondi–Metzner–Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. We also utilize the Heisenberg–Clifford vertex superalgebra to construct a free field realization for the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra, which includes Fock modules and certain Whittaker modules.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"89 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth modules over the N = 1 Bondi–Metzner–Sachs superalgebra\",\"authors\":\"Dong Liu, Yufeng Pei, Limeng Xia, Kaiming Zhao\",\"doi\":\"10.1142/s0219199724500214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a determinant formula for a contravariant form on Verma modules over the <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> Bondi–Metzner–Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. We also utilize the Heisenberg–Clifford vertex superalgebra to construct a free field realization for the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra, which includes Fock modules and certain Whittaker modules.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500214\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500214","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Smooth modules over the N = 1 Bondi–Metzner–Sachs superalgebra
In this paper, we present a determinant formula for a contravariant form on Verma modules over the Bondi–Metzner–Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the BMS superalgebra. We also utilize the Heisenberg–Clifford vertex superalgebra to construct a free field realization for the BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the BMS superalgebra, which includes Fock modules and certain Whittaker modules.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.