N = 1 邦迪-梅兹纳-萨克斯超代数上的光滑模块

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dong Liu, Yufeng Pei, Limeng Xia, Kaiming Zhao
{"title":"N = 1 邦迪-梅兹纳-萨克斯超代数上的光滑模块","authors":"Dong Liu, Yufeng Pei, Limeng Xia, Kaiming Zhao","doi":"10.1142/s0219199724500214","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a determinant formula for a contravariant form on Verma modules over the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> Bondi–Metzner–Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. We also utilize the Heisenberg–Clifford vertex superalgebra to construct a free field realization for the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra, which includes Fock modules and certain Whittaker modules.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth modules over the N = 1 Bondi–Metzner–Sachs superalgebra\",\"authors\":\"Dong Liu, Yufeng Pei, Limeng Xia, Kaiming Zhao\",\"doi\":\"10.1142/s0219199724500214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a determinant formula for a contravariant form on Verma modules over the <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> Bondi–Metzner–Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. We also utilize the Heisenberg–Clifford vertex superalgebra to construct a free field realization for the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra, which includes Fock modules and certain Whittaker modules.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500214\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500214","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了关于 N=1 邦迪-梅兹纳-萨克斯(BMS)超代数上的维尔马模块的协变形式的行列式。该公式为 Verma 模块的不可还原性建立了必要条件和充分条件。然后,我们引入并描述了一类简单光滑模块,它们概括了 N=1 BMS 上代数的 Verma 模块和 Whittaker 模块。我们还利用海森堡-克利福德顶点超代数构建了 N=1 BMS 超代数的自由场实现。通过这个自由场实现,我们可以得到 N=1 BMS 上代数的自然光滑模块族,其中包括福克模块和某些惠特克模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth modules over the N = 1 Bondi–Metzner–Sachs superalgebra

In this paper, we present a determinant formula for a contravariant form on Verma modules over the N=1 Bondi–Metzner–Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the N=1 BMS superalgebra. We also utilize the Heisenberg–Clifford vertex superalgebra to construct a free field realization for the N=1 BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the N=1 BMS superalgebra, which includes Fock modules and certain Whittaker modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信