{"title":"N = 1 邦迪-梅兹纳-萨克斯超代数上的光滑模块","authors":"Dong Liu, Yufeng Pei, Limeng Xia, Kaiming Zhao","doi":"10.1142/s0219199724500214","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a determinant formula for a contravariant form on Verma modules over the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> Bondi–Metzner–Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. We also utilize the Heisenberg–Clifford vertex superalgebra to construct a free field realization for the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra, which includes Fock modules and certain Whittaker modules.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth modules over the N = 1 Bondi–Metzner–Sachs superalgebra\",\"authors\":\"Dong Liu, Yufeng Pei, Limeng Xia, Kaiming Zhao\",\"doi\":\"10.1142/s0219199724500214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a determinant formula for a contravariant form on Verma modules over the <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> Bondi–Metzner–Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. We also utilize the Heisenberg–Clifford vertex superalgebra to construct a free field realization for the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"italic\\\"><mi>N</mi></mstyle><mo>=</mo><mn>1</mn></math></span><span></span> BMS superalgebra, which includes Fock modules and certain Whittaker modules.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500214\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500214","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Smooth modules over the N = 1 Bondi–Metzner–Sachs superalgebra
In this paper, we present a determinant formula for a contravariant form on Verma modules over the Bondi–Metzner–Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the BMS superalgebra. We also utilize the Heisenberg–Clifford vertex superalgebra to construct a free field realization for the BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the BMS superalgebra, which includes Fock modules and certain Whittaker modules.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.