拉克索空间的最大方向导数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Marco Capolli, Andrea Pinamonti, Gareth Speight
{"title":"拉克索空间的最大方向导数","authors":"Marco Capolli, Andrea Pinamonti, Gareth Speight","doi":"10.1142/s0219199724500172","DOIUrl":null,"url":null,"abstract":"<p>We investigate the connection between maximal directional derivatives and differentiability for Lipschitz functions defined on Laakso space. We show that maximality of a directional derivative for a Lipschitz function implies differentiability only for a <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi></math></span><span></span>-porous set of points. On the other hand, the distance to a fixed point is differentiable everywhere except for a <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi></math></span><span></span>-porous set of points. This behavior is completely different to the previously studied settings of Euclidean spaces, Carnot groups and Banach spaces. Hence, the techniques used in these spaces do not generalize to metric measure spaces.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal directional derivatives in Laakso space\",\"authors\":\"Marco Capolli, Andrea Pinamonti, Gareth Speight\",\"doi\":\"10.1142/s0219199724500172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the connection between maximal directional derivatives and differentiability for Lipschitz functions defined on Laakso space. We show that maximality of a directional derivative for a Lipschitz function implies differentiability only for a <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>σ</mi></math></span><span></span>-porous set of points. On the other hand, the distance to a fixed point is differentiable everywhere except for a <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>σ</mi></math></span><span></span>-porous set of points. This behavior is completely different to the previously studied settings of Euclidean spaces, Carnot groups and Banach spaces. Hence, the techniques used in these spaces do not generalize to metric measure spaces.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500172\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了定义在拉克索空间上的 Lipschitz 函数的最大方向导数与可微性之间的联系。我们证明,Lipschitz 函数的最大方向导数只意味着σ多孔点集的可微性。另一方面,除了 σ 多孔点集之外,到定点的距离在任何地方都是可微分的。这种行为与之前研究的欧几里得空间、卡诺群和巴拿赫空间完全不同。因此,在这些空间中使用的技术不能推广到公度量空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal directional derivatives in Laakso space

We investigate the connection between maximal directional derivatives and differentiability for Lipschitz functions defined on Laakso space. We show that maximality of a directional derivative for a Lipschitz function implies differentiability only for a σ-porous set of points. On the other hand, the distance to a fixed point is differentiable everywhere except for a σ-porous set of points. This behavior is completely different to the previously studied settings of Euclidean spaces, Carnot groups and Banach spaces. Hence, the techniques used in these spaces do not generalize to metric measure spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信