k-th Power Paley Digraph 的跨域子域和改进的拉姆齐数下限

IF 0.6 4区 数学 Q3 MATHEMATICS
Dermot McCarthy, Mason Springfield
{"title":"k-th Power Paley Digraph 的跨域子域和改进的拉姆齐数下限","authors":"Dermot McCarthy, Mason Springfield","doi":"10.1007/s00373-024-02792-7","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(k \\ge 2\\)</span> be an even integer. Let <i>q</i> be a prime power such that <span>\\(q \\equiv k+1 (\\text {mod}\\,\\,2k)\\)</span>. We define the <i>k-th power Paley digraph</i> of order <i>q</i>, <span>\\(G_k(q)\\)</span>, as the graph with vertex set <span>\\(\\mathbb {F}_q\\)</span> where <span>\\(a \\rightarrow b\\)</span> is an edge if and only if <span>\\(b-a\\)</span> is a <i>k</i>-th power residue. This generalizes the (<span>\\(k=2\\)</span>) Paley Tournament. We provide a formula, in terms of finite field hypergeometric functions, for the number of transitive subtournaments of order four contained in <span>\\(G_k(q)\\)</span>, <span>\\(\\mathcal {K}_4(G_k(q))\\)</span>, which holds for all <i>k</i>. We also provide a formula, in terms of Jacobi sums, for the number of transitive subtournaments of order three contained in <span>\\(G_k(q)\\)</span>, <span>\\(\\mathcal {K}_3(G_k(q))\\)</span>. In both cases, we give explicit determinations of these formulae for small <i>k</i>. We show that zero values of <span>\\(\\mathcal {K}_4(G_k(q))\\)</span> (resp. <span>\\(\\mathcal {K}_3(G_k(q))\\)</span>) yield lower bounds for the multicolor directed Ramsey numbers <span>\\(R_{\\frac{k}{2}}(4)=R(4,4,\\ldots ,4)\\)</span> (resp. <span>\\(R_{\\frac{k}{2}}(3)\\)</span>). We state explicitly these lower bounds for <span>\\(k\\le 10\\)</span> and compare to known bounds, showing improvement for <span>\\(R_2(4)\\)</span> and <span>\\(R_3(3)\\)</span>. Combining with known multiplicative relations we give improved lower bounds for <span>\\(R_{t}(4)\\)</span>, for all <span>\\(t\\ge 2\\)</span>, and for <span>\\(R_{t}(3)\\)</span>, for all <span>\\(t \\ge 3\\)</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"37 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transitive Subtournaments of k-th Power Paley Digraphs and Improved Lower Bounds for Ramsey Numbers\",\"authors\":\"Dermot McCarthy, Mason Springfield\",\"doi\":\"10.1007/s00373-024-02792-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(k \\\\ge 2\\\\)</span> be an even integer. Let <i>q</i> be a prime power such that <span>\\\\(q \\\\equiv k+1 (\\\\text {mod}\\\\,\\\\,2k)\\\\)</span>. We define the <i>k-th power Paley digraph</i> of order <i>q</i>, <span>\\\\(G_k(q)\\\\)</span>, as the graph with vertex set <span>\\\\(\\\\mathbb {F}_q\\\\)</span> where <span>\\\\(a \\\\rightarrow b\\\\)</span> is an edge if and only if <span>\\\\(b-a\\\\)</span> is a <i>k</i>-th power residue. This generalizes the (<span>\\\\(k=2\\\\)</span>) Paley Tournament. We provide a formula, in terms of finite field hypergeometric functions, for the number of transitive subtournaments of order four contained in <span>\\\\(G_k(q)\\\\)</span>, <span>\\\\(\\\\mathcal {K}_4(G_k(q))\\\\)</span>, which holds for all <i>k</i>. We also provide a formula, in terms of Jacobi sums, for the number of transitive subtournaments of order three contained in <span>\\\\(G_k(q)\\\\)</span>, <span>\\\\(\\\\mathcal {K}_3(G_k(q))\\\\)</span>. In both cases, we give explicit determinations of these formulae for small <i>k</i>. We show that zero values of <span>\\\\(\\\\mathcal {K}_4(G_k(q))\\\\)</span> (resp. <span>\\\\(\\\\mathcal {K}_3(G_k(q))\\\\)</span>) yield lower bounds for the multicolor directed Ramsey numbers <span>\\\\(R_{\\\\frac{k}{2}}(4)=R(4,4,\\\\ldots ,4)\\\\)</span> (resp. <span>\\\\(R_{\\\\frac{k}{2}}(3)\\\\)</span>). We state explicitly these lower bounds for <span>\\\\(k\\\\le 10\\\\)</span> and compare to known bounds, showing improvement for <span>\\\\(R_2(4)\\\\)</span> and <span>\\\\(R_3(3)\\\\)</span>. Combining with known multiplicative relations we give improved lower bounds for <span>\\\\(R_{t}(4)\\\\)</span>, for all <span>\\\\(t\\\\ge 2\\\\)</span>, and for <span>\\\\(R_{t}(3)\\\\)</span>, for all <span>\\\\(t \\\\ge 3\\\\)</span>.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02792-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02792-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(k \ge 2\) 是一个偶整数。让 q 是一个质数幂,使得 \(q \equiv k+1 (\text {mod}\,\,2k)\).我们定义阶数为q的k次幂帕利数字图(G_k(q)\)为具有顶点集\(\mathbb {F}_q\) 的图,其中\(a \rightarrow b\) 是一条边,当且仅当\(b-a\) 是一个k次幂残差。这概括了 (\(k=2\))帕利锦标赛。我们用有限域超几何函数为包含在 \(G_k(q)\), \(\mathcal {K}_4(G_k(q))\) 中的四阶反式子锦标赛的数目提供了一个公式,这个公式对所有 k 都成立。我们还提供了一个雅可比和公式,用于计算 \(G_k(q)\), \(\mathcal {K}_3(G_k(q))\) 中包含的三阶反式子域的数量。我们证明了 \(\mathcal {K}_4(G_k(q))\) 的零值(respect.\(\mathcal{K}_3(G_k(q))\)产生了多色有向拉姆齐数的下界\(R_{\frac{k}{2}}(4)=R(4,4,\ldots ,4)\)(resp. \(R_{\frac{k}{2}}(3)\)。我们明确地指出了这些下限,并与(R_2(4))和(R_3(3))的已知下限进行了比较。结合已知的乘法关系,我们给出了对于所有(t\ge 2\) 和所有(t\ge 3\) 的(R_{t}(4)\)和(R_{t}(3)\)的改进下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transitive Subtournaments of k-th Power Paley Digraphs and Improved Lower Bounds for Ramsey Numbers

Let \(k \ge 2\) be an even integer. Let q be a prime power such that \(q \equiv k+1 (\text {mod}\,\,2k)\). We define the k-th power Paley digraph of order q, \(G_k(q)\), as the graph with vertex set \(\mathbb {F}_q\) where \(a \rightarrow b\) is an edge if and only if \(b-a\) is a k-th power residue. This generalizes the (\(k=2\)) Paley Tournament. We provide a formula, in terms of finite field hypergeometric functions, for the number of transitive subtournaments of order four contained in \(G_k(q)\), \(\mathcal {K}_4(G_k(q))\), which holds for all k. We also provide a formula, in terms of Jacobi sums, for the number of transitive subtournaments of order three contained in \(G_k(q)\), \(\mathcal {K}_3(G_k(q))\). In both cases, we give explicit determinations of these formulae for small k. We show that zero values of \(\mathcal {K}_4(G_k(q))\) (resp. \(\mathcal {K}_3(G_k(q))\)) yield lower bounds for the multicolor directed Ramsey numbers \(R_{\frac{k}{2}}(4)=R(4,4,\ldots ,4)\) (resp. \(R_{\frac{k}{2}}(3)\)). We state explicitly these lower bounds for \(k\le 10\) and compare to known bounds, showing improvement for \(R_2(4)\) and \(R_3(3)\). Combining with known multiplicative relations we give improved lower bounds for \(R_{t}(4)\), for all \(t\ge 2\), and for \(R_{t}(3)\), for all \(t \ge 3\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信