超立方体的广义特尔维利格代数

IF 0.6 4区 数学 Q3 MATHEMATICS
Nathan Nicholson
{"title":"超立方体的广义特尔维利格代数","authors":"Nathan Nicholson","doi":"10.1007/s00373-024-02801-9","DOIUrl":null,"url":null,"abstract":"<p>In the year 2000, Eric Egge introduced the generalized Terwilliger algebra <span>\\({\\mathcal {T}}\\)</span> of a distance-regular graph <span>\\(\\varGamma \\)</span>. For any vertex <i>x</i> of <span>\\(\\varGamma \\)</span>, there is a surjective algebra homomorphism <span>\\(\\natural \\)</span> from <span>\\({\\mathcal {T}}\\)</span> to the Terwilliger algebra <i>T</i>(<i>x</i>). If <span>\\(\\varGamma \\)</span> is a complete graph, then <span>\\(\\natural \\)</span> is an isomorphism. If <span>\\(\\varGamma \\)</span> is not complete, then <span>\\(\\natural \\)</span> may or may not be an isomorphism, and in general the details are unknown. We show that if <span>\\(\\varGamma \\)</span> is a hypercube, there exists an isomorphism from <span>\\({\\mathcal {T}}\\)</span> to a direct sum of full matrix algebras. Using this result, we then show that if <span>\\(\\varGamma \\)</span> is a hypercube, the algebra homomorphism <span>\\(\\natural :{\\mathcal {T}}\\rightarrow T(x)\\)</span> is an isomorphism for all vertices <i>x</i> of <span>\\(\\varGamma \\)</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"40 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Generalized Terwilliger Algebra of the Hypercube\",\"authors\":\"Nathan Nicholson\",\"doi\":\"10.1007/s00373-024-02801-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the year 2000, Eric Egge introduced the generalized Terwilliger algebra <span>\\\\({\\\\mathcal {T}}\\\\)</span> of a distance-regular graph <span>\\\\(\\\\varGamma \\\\)</span>. For any vertex <i>x</i> of <span>\\\\(\\\\varGamma \\\\)</span>, there is a surjective algebra homomorphism <span>\\\\(\\\\natural \\\\)</span> from <span>\\\\({\\\\mathcal {T}}\\\\)</span> to the Terwilliger algebra <i>T</i>(<i>x</i>). If <span>\\\\(\\\\varGamma \\\\)</span> is a complete graph, then <span>\\\\(\\\\natural \\\\)</span> is an isomorphism. If <span>\\\\(\\\\varGamma \\\\)</span> is not complete, then <span>\\\\(\\\\natural \\\\)</span> may or may not be an isomorphism, and in general the details are unknown. We show that if <span>\\\\(\\\\varGamma \\\\)</span> is a hypercube, there exists an isomorphism from <span>\\\\({\\\\mathcal {T}}\\\\)</span> to a direct sum of full matrix algebras. Using this result, we then show that if <span>\\\\(\\\\varGamma \\\\)</span> is a hypercube, the algebra homomorphism <span>\\\\(\\\\natural :{\\\\mathcal {T}}\\\\rightarrow T(x)\\\\)</span> is an isomorphism for all vertices <i>x</i> of <span>\\\\(\\\\varGamma \\\\)</span>.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02801-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02801-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2000 年,埃里克-埃格(Eric Egge)提出了距离规则图 \(\varGamma \)的广义特威里格代数 \({\mathcal {T}}\) 。对于 \(\varGamma \)的任意顶点 x,存在一个从 \({\mathcal {T}}\) 到 Terwilliger 代数 T(x) 的投射代数同态。如果 \(\varGamma \) 是一个完整的图,那么 \(\natural \) 就是一个同构。如果 \(\varGamma \) 不是完整的图,那么 \(\natural \) 可能是也可能不是同构的,一般来说细节是未知的。我们证明,如果 \(\varGamma \) 是一个超立方体,那么存在一个从 \({\mathcal {T}}\) 到全矩阵代数的直接和的同构。利用这个结果,我们可以证明如果 \(\varGamma \) 是一个超立方体,那么对于 \(\varGamma \) 的所有顶点 x 来说,代数同构 \(\natural :{\mathcal {T}}\rightarrow T(x)\) 是一个同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Generalized Terwilliger Algebra of the Hypercube

The Generalized Terwilliger Algebra of the Hypercube

In the year 2000, Eric Egge introduced the generalized Terwilliger algebra \({\mathcal {T}}\) of a distance-regular graph \(\varGamma \). For any vertex x of \(\varGamma \), there is a surjective algebra homomorphism \(\natural \) from \({\mathcal {T}}\) to the Terwilliger algebra T(x). If \(\varGamma \) is a complete graph, then \(\natural \) is an isomorphism. If \(\varGamma \) is not complete, then \(\natural \) may or may not be an isomorphism, and in general the details are unknown. We show that if \(\varGamma \) is a hypercube, there exists an isomorphism from \({\mathcal {T}}\) to a direct sum of full matrix algebras. Using this result, we then show that if \(\varGamma \) is a hypercube, the algebra homomorphism \(\natural :{\mathcal {T}}\rightarrow T(x)\) is an isomorphism for all vertices x of \(\varGamma \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信