根据 VMC/VENUS Express 和 UVI/AKATSUKI 的长期紫外线观测,阿佛洛狄特-泰拉上空金星云顶的风速变化

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
M. V. Patsaeva, I. V. Khatuntsev, D. V. Titov, N. I. Ignatiev, L. V. Zasova, D. A. Gorinov, A. V. Turin
{"title":"根据 VMC/VENUS Express 和 UVI/AKATSUKI 的长期紫外线观测,阿佛洛狄特-泰拉上空金星云顶的风速变化","authors":"M. V. Patsaeva, I. V. Khatuntsev, D. V. Titov, N. I. Ignatiev, L. V. Zasova, D. A. Gorinov, A. V. Turin","doi":"10.1134/s0038094623700053","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Series of consecutive UV (365 nm) images of Venus cloud coverage provide a way to investigate dynamics of the mesosphere. An unprecedented series of such images was obtained by the VMC/Venus Express (ESA) and UVI/Akatsuki (JAXA) cameras from 2006 to 2022. At 10°S long-term variations in the mean zonal and meridional wind speed are observed with a period of 12.5 ± 0.5 years. Analysis of the of the mean zonal wind behavior around noon (12 ± 1 h) at phase angles of 60°–90° in limited observation time intervals shows that near the minimum of the long-term dependence the deceleration of the horizontal flow is observed above the highest part of Aphrodite Terra, Ovda Regio, for both VMC and UVI. Conversely, acceleration is observed above the Ovda Regio near the maximum of the long-term dependence. The considered longitudinal variations of the zonal wind speed extend from the equator to middle latitudes (0°–40°). The meridional wind speed shows longitudinal variations associated with the topography of the underlying surface, regardless of whether the horizontal flow is slowing down or accelerating above the highlands of Aphrodite Terra.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind Speed Variations at the Venus Cloud Top above Aphrodite Terra According to Long-term UV Observations by VMC/VENUS Express and UVI/AKATSUKI\",\"authors\":\"M. V. Patsaeva, I. V. Khatuntsev, D. V. Titov, N. I. Ignatiev, L. V. Zasova, D. A. Gorinov, A. V. Turin\",\"doi\":\"10.1134/s0038094623700053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Series of consecutive UV (365 nm) images of Venus cloud coverage provide a way to investigate dynamics of the mesosphere. An unprecedented series of such images was obtained by the VMC/Venus Express (ESA) and UVI/Akatsuki (JAXA) cameras from 2006 to 2022. At 10°S long-term variations in the mean zonal and meridional wind speed are observed with a period of 12.5 ± 0.5 years. Analysis of the of the mean zonal wind behavior around noon (12 ± 1 h) at phase angles of 60°–90° in limited observation time intervals shows that near the minimum of the long-term dependence the deceleration of the horizontal flow is observed above the highest part of Aphrodite Terra, Ovda Regio, for both VMC and UVI. Conversely, acceleration is observed above the Ovda Regio near the maximum of the long-term dependence. The considered longitudinal variations of the zonal wind speed extend from the equator to middle latitudes (0°–40°). The meridional wind speed shows longitudinal variations associated with the topography of the underlying surface, regardless of whether the horizontal flow is slowing down or accelerating above the highlands of Aphrodite Terra.</p>\",\"PeriodicalId\":778,\"journal\":{\"name\":\"Solar System Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar System Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0038094623700053\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0038094623700053","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要金星云层覆盖的一系列连续紫外线(365 nm)图像为研究中间层的动态提供了一种方法。从2006年到2022年,VMC/金星快车(欧空局)和UVI/Akatsuki(日本宇宙航空研究开发机构)相机获得了一系列前所未有的此类图像。在南纬 10°,观测到平均纵向和经向风速的长期变化,周期为 12.5 ± 0.5 年。在有限的观测时间间隔内,对正午前后(12±1 小时)相位角为 60°-90°的平均纵向风速行为分析表明,在长期依赖性的最小值附近,在阿芙罗狄蒂地球的最高处 Ovda Regio 上方观测到水平气流减速,VMC 和 UVI 均是如此。相反,在长期相关性最大值附近的 Ovda Regio 上方则观察到加速现象。所考虑的纵向风速变化从赤道延伸到中纬度(0°-40°)。经向风速的纵向变化与地表下的地形有关,无论水平气流在阿芙乐尔地拉高地上空是减慢还是加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wind Speed Variations at the Venus Cloud Top above Aphrodite Terra According to Long-term UV Observations by VMC/VENUS Express and UVI/AKATSUKI

Wind Speed Variations at the Venus Cloud Top above Aphrodite Terra According to Long-term UV Observations by VMC/VENUS Express and UVI/AKATSUKI

Abstract

Series of consecutive UV (365 nm) images of Venus cloud coverage provide a way to investigate dynamics of the mesosphere. An unprecedented series of such images was obtained by the VMC/Venus Express (ESA) and UVI/Akatsuki (JAXA) cameras from 2006 to 2022. At 10°S long-term variations in the mean zonal and meridional wind speed are observed with a period of 12.5 ± 0.5 years. Analysis of the of the mean zonal wind behavior around noon (12 ± 1 h) at phase angles of 60°–90° in limited observation time intervals shows that near the minimum of the long-term dependence the deceleration of the horizontal flow is observed above the highest part of Aphrodite Terra, Ovda Regio, for both VMC and UVI. Conversely, acceleration is observed above the Ovda Regio near the maximum of the long-term dependence. The considered longitudinal variations of the zonal wind speed extend from the equator to middle latitudes (0°–40°). The meridional wind speed shows longitudinal variations associated with the topography of the underlying surface, regardless of whether the horizontal flow is slowing down or accelerating above the highlands of Aphrodite Terra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar System Research
Solar System Research 地学天文-天文与天体物理
CiteScore
1.60
自引率
33.30%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信