辐射分解是火星和欧罗巴上高氯酸盐合成的可能机制

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
D. V. Belousov, V. S. Cheptsov, A. K. Pavlov
{"title":"辐射分解是火星和欧罗巴上高氯酸盐合成的可能机制","authors":"D. V. Belousov, V. S. Cheptsov, A. K. Pavlov","doi":"10.1134/s0038094624700126","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>Perchlorates have been found in the regolith of Mars and the Moon, in the ice of Europa, and in meteorites. Studying the processes of formation and destruction of these compounds is important both for understanding the geological and climatic evolution of a number of planets and bodies of the Solar System, and for assessing their habitability. To date, a number of processes for the synthesis of perchlorates under Martian conditions have been proposed, but these do not explain the perchlorate concentrations observed in the regolith and are not applicable to atmosphereless bodies, in particular Europa. We have studied the processes of synthesis and destruction of perchlorates during irradiation of ice and regolith models with high-energy electrons under conditions of low temperature (–50°C) and in the absence of an atmosphere (at a pressure of 0.01 mbar). The data obtained indicate that perchlorates can be efficiently synthesized in the regolith of Mars and the surface layer of Europa ice under the influence of irradiation in the absence of a liquid phase or an atmosphere.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiolysis as a Possible Mechanism for Perchlorate Synthesis on Mars and Europa\",\"authors\":\"D. V. Belousov, V. S. Cheptsov, A. K. Pavlov\",\"doi\":\"10.1134/s0038094624700126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">\\n<b>Abstract</b>—</h3><p>Perchlorates have been found in the regolith of Mars and the Moon, in the ice of Europa, and in meteorites. Studying the processes of formation and destruction of these compounds is important both for understanding the geological and climatic evolution of a number of planets and bodies of the Solar System, and for assessing their habitability. To date, a number of processes for the synthesis of perchlorates under Martian conditions have been proposed, but these do not explain the perchlorate concentrations observed in the regolith and are not applicable to atmosphereless bodies, in particular Europa. We have studied the processes of synthesis and destruction of perchlorates during irradiation of ice and regolith models with high-energy electrons under conditions of low temperature (–50°C) and in the absence of an atmosphere (at a pressure of 0.01 mbar). The data obtained indicate that perchlorates can be efficiently synthesized in the regolith of Mars and the surface layer of Europa ice under the influence of irradiation in the absence of a liquid phase or an atmosphere.</p>\",\"PeriodicalId\":778,\"journal\":{\"name\":\"Solar System Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar System Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0038094624700126\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0038094624700126","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要-在火星和月球的碎屑岩、欧罗巴冰层以及陨石中都发现了高氯酸盐。研究这些化合物的形成和破坏过程对于了解一些行星和太阳系天体的地质和气候演变以及评估它们的宜居性都非常重要。迄今为止,已经提出了一些在火星条件下合成高氯酸盐的过程,但这些过程无法解释在碎屑岩中观测到的高氯酸盐浓度,也不适用于无大气层的天体,特别是木卫二。我们研究了在低温(-50°C)和无大气(压力为 0.01 毫巴)条件下,用高能电子辐照冰和碎屑模型时高氯酸盐的合成和破坏过程。所获得的数据表明,在没有液相或大气的情况下,在辐照的影响下,可以在火星的碎石和欧罗巴冰的表层有效地合成高氯酸盐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiolysis as a Possible Mechanism for Perchlorate Synthesis on Mars and Europa

Abstract

Perchlorates have been found in the regolith of Mars and the Moon, in the ice of Europa, and in meteorites. Studying the processes of formation and destruction of these compounds is important both for understanding the geological and climatic evolution of a number of planets and bodies of the Solar System, and for assessing their habitability. To date, a number of processes for the synthesis of perchlorates under Martian conditions have been proposed, but these do not explain the perchlorate concentrations observed in the regolith and are not applicable to atmosphereless bodies, in particular Europa. We have studied the processes of synthesis and destruction of perchlorates during irradiation of ice and regolith models with high-energy electrons under conditions of low temperature (–50°C) and in the absence of an atmosphere (at a pressure of 0.01 mbar). The data obtained indicate that perchlorates can be efficiently synthesized in the regolith of Mars and the surface layer of Europa ice under the influence of irradiation in the absence of a liquid phase or an atmosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar System Research
Solar System Research 地学天文-天文与天体物理
CiteScore
1.60
自引率
33.30%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信