利用保真易感性实现具有精确流动边缘的广义奥布里-安德烈模型的量子临界性

Yu-Bin Liu, Wen-Yi Zhang, Tian-Cheng Yi, Liangsheng Li, Maoxin Liu, Wen-Long You
{"title":"利用保真易感性实现具有精确流动边缘的广义奥布里-安德烈模型的量子临界性","authors":"Yu-Bin Liu, Wen-Yi Zhang, Tian-Cheng Yi, Liangsheng Li, Maoxin Liu, Wen-Long You","doi":"arxiv-2405.13282","DOIUrl":null,"url":null,"abstract":"In this study, we explore the quantum critical phenomena in generalized\nAubry-Andr\\'{e} models, with a particular focus on the scaling behavior at\nvarious filling states. Our approach involves using quantum fidelity\nsusceptibility to precisely identify the mobility edges in these systems.\nThrough a finite-size scaling analysis of the fidelity susceptibility, we are\nable to determine both the correlation-length critical exponent and the\ndynamical critical exponent at the critical point of the generalized\nAubry-Andr\\'{e} model. Based on the Diophantine equation conjecture, we can\ndetermines the number of subsequences of the Fibonacci sequence and the\ncorresponding scaling functions for a specific filling fraction, as well as the\nuniversality class. Our findings demonstrate the effectiveness of employing the\ngeneralized fidelity susceptibility for the analysis of unconventional quantum\ncriticality and the associated universal information of quasiperiodic systems\nin cutting-edge quantum simulation experiments.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum criticality of generalized Aubry-André models with exact mobility edges using fidelity susceptibility\",\"authors\":\"Yu-Bin Liu, Wen-Yi Zhang, Tian-Cheng Yi, Liangsheng Li, Maoxin Liu, Wen-Long You\",\"doi\":\"arxiv-2405.13282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we explore the quantum critical phenomena in generalized\\nAubry-Andr\\\\'{e} models, with a particular focus on the scaling behavior at\\nvarious filling states. Our approach involves using quantum fidelity\\nsusceptibility to precisely identify the mobility edges in these systems.\\nThrough a finite-size scaling analysis of the fidelity susceptibility, we are\\nable to determine both the correlation-length critical exponent and the\\ndynamical critical exponent at the critical point of the generalized\\nAubry-Andr\\\\'{e} model. Based on the Diophantine equation conjecture, we can\\ndetermines the number of subsequences of the Fibonacci sequence and the\\ncorresponding scaling functions for a specific filling fraction, as well as the\\nuniversality class. Our findings demonstrate the effectiveness of employing the\\ngeneralized fidelity susceptibility for the analysis of unconventional quantum\\ncriticality and the associated universal information of quasiperiodic systems\\nin cutting-edge quantum simulation experiments.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探讨了广义奥布里-安德尔(Aubry-Andr\'{e})模型中的量子临界现象,尤其关注各种填充态的缩放行为。通过对保真度敏感性的有限大小缩放分析,我们可以确定广义奥布里-安德罗模型临界点的相关长度临界指数和动力学临界指数。基于 Diophantine 方程猜想,我们确定了特定填充分数的斐波那契序列子序列数和相应的缩放函数,以及普遍性类别。我们的研究结果证明,在前沿量子模拟实验中,利用广义保真度敏感性分析非常规量子临界性和相关准周期系统的普适信息是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum criticality of generalized Aubry-André models with exact mobility edges using fidelity susceptibility
In this study, we explore the quantum critical phenomena in generalized Aubry-Andr\'{e} models, with a particular focus on the scaling behavior at various filling states. Our approach involves using quantum fidelity susceptibility to precisely identify the mobility edges in these systems. Through a finite-size scaling analysis of the fidelity susceptibility, we are able to determine both the correlation-length critical exponent and the dynamical critical exponent at the critical point of the generalized Aubry-Andr\'{e} model. Based on the Diophantine equation conjecture, we can determines the number of subsequences of the Fibonacci sequence and the corresponding scaling functions for a specific filling fraction, as well as the universality class. Our findings demonstrate the effectiveness of employing the generalized fidelity susceptibility for the analysis of unconventional quantum criticality and the associated universal information of quasiperiodic systems in cutting-edge quantum simulation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信