{"title":"在 NCOP 的分支与边界求解器中通过上界局部搜索方法选择节点","authors":"Victor Reyes, Ignacio Araya","doi":"10.1007/s10898-024-01403-2","DOIUrl":null,"url":null,"abstract":"<p>Interval-based branch & bound solvers are commonly used for solving Nonlinear Continuous global Optimization Problems (NCOPs). In each iteration, the solver strategically chooses and processes a node within the search tree. The node is bisected and the two generated offspring nodes are processed by filtering methods. For each of these nodes, the solver also searches for new feasible solutions in order to update the best candidate solution. The cost of this solution is used for pruning non-optimal branches of the search tree. Thus, node selection and finding new solutions, stands as pivotal aspects in the functionality of these kind of solvers. The ability to find close-to-optimal solutions early in the search process may discard extensive non-optimal search space regions, thereby effectively reducing the overall size of the search tree. In this work, we propose three novel node selection algorithms that use the feasible solutions obtained through a cost-effective iterative method. Upon updating the best candidate solution, these algorithms strategically choose the node containing this solution for subsequent processing. The newly introduced strategies have been incorporated as node selection methods in a state-of-the-art branch & bound solver, showing promising results in a set of 57 benchmark instances.\n</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"47 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Node selection through upper bounding local search methods in branch & bound solvers for NCOPs\",\"authors\":\"Victor Reyes, Ignacio Araya\",\"doi\":\"10.1007/s10898-024-01403-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Interval-based branch & bound solvers are commonly used for solving Nonlinear Continuous global Optimization Problems (NCOPs). In each iteration, the solver strategically chooses and processes a node within the search tree. The node is bisected and the two generated offspring nodes are processed by filtering methods. For each of these nodes, the solver also searches for new feasible solutions in order to update the best candidate solution. The cost of this solution is used for pruning non-optimal branches of the search tree. Thus, node selection and finding new solutions, stands as pivotal aspects in the functionality of these kind of solvers. The ability to find close-to-optimal solutions early in the search process may discard extensive non-optimal search space regions, thereby effectively reducing the overall size of the search tree. In this work, we propose three novel node selection algorithms that use the feasible solutions obtained through a cost-effective iterative method. Upon updating the best candidate solution, these algorithms strategically choose the node containing this solution for subsequent processing. The newly introduced strategies have been incorporated as node selection methods in a state-of-the-art branch & bound solver, showing promising results in a set of 57 benchmark instances.\\n</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01403-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01403-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Node selection through upper bounding local search methods in branch & bound solvers for NCOPs
Interval-based branch & bound solvers are commonly used for solving Nonlinear Continuous global Optimization Problems (NCOPs). In each iteration, the solver strategically chooses and processes a node within the search tree. The node is bisected and the two generated offspring nodes are processed by filtering methods. For each of these nodes, the solver also searches for new feasible solutions in order to update the best candidate solution. The cost of this solution is used for pruning non-optimal branches of the search tree. Thus, node selection and finding new solutions, stands as pivotal aspects in the functionality of these kind of solvers. The ability to find close-to-optimal solutions early in the search process may discard extensive non-optimal search space regions, thereby effectively reducing the overall size of the search tree. In this work, we propose three novel node selection algorithms that use the feasible solutions obtained through a cost-effective iterative method. Upon updating the best candidate solution, these algorithms strategically choose the node containing this solution for subsequent processing. The newly introduced strategies have been incorporated as node selection methods in a state-of-the-art branch & bound solver, showing promising results in a set of 57 benchmark instances.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.