Golo A. Wimmer, Ben S. Southworth, Thomas J. Gregory, Xian-Zhu Tang
{"title":"高各向异性热通量 I 的快速代数多网格求解器和精确离散化:开阔场线","authors":"Golo A. Wimmer, Ben S. Southworth, Thomas J. Gregory, Xian-Zhu Tang","doi":"10.1137/23m155918x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1821-A1849, June 2024. <br/> Abstract. We present a novel solver technique for the anisotropic heat flux equation, aimed at the high level of anisotropy seen in magnetic confinement fusion plasmas. Such problems pose two major challenges: (i) discretization accuracy and (ii) efficient implicit linear solvers. We simultaneously address each of these challenges by constructing a new finite element discretization with excellent accuracy properties, tailored to a novel solver approach based on algebraic multigrid (AMG) methods designed for advective operators. We pose the problem in a mixed formulation, introducing the directional temperature gradient as an auxiliary variable. The temperature and auxiliary fields are discretized in a scalar discontinuous Galerkin space with upwinding principles used for discretizations of advection. We demonstrate the proposed discretization’s superior accuracy over other discretizations of anisotropic heat flux, achieving error [math] smaller for anisotropy ratio of [math], for closed field lines. The block matrix system is reordered and solved in an approach where the two advection operators are inverted using AMG solvers based on approximate ideal restriction, which is particularly efficient for upwind discontinuous Galerkin discretizations of advection. To ensure that the advection operators are nonsingular, in this paper we restrict ourselves to considering open (acyclic) magnetic field lines for the linear solvers. We demonstrate fast convergence of the proposed iterative solver in highly anisotropic regimes where other diffusion-based AMG methods fail.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"38 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast Algebraic Multigrid Solver and Accurate Discretization for Highly Anisotropic Heat Flux I: Open Field Lines\",\"authors\":\"Golo A. Wimmer, Ben S. Southworth, Thomas J. Gregory, Xian-Zhu Tang\",\"doi\":\"10.1137/23m155918x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1821-A1849, June 2024. <br/> Abstract. We present a novel solver technique for the anisotropic heat flux equation, aimed at the high level of anisotropy seen in magnetic confinement fusion plasmas. Such problems pose two major challenges: (i) discretization accuracy and (ii) efficient implicit linear solvers. We simultaneously address each of these challenges by constructing a new finite element discretization with excellent accuracy properties, tailored to a novel solver approach based on algebraic multigrid (AMG) methods designed for advective operators. We pose the problem in a mixed formulation, introducing the directional temperature gradient as an auxiliary variable. The temperature and auxiliary fields are discretized in a scalar discontinuous Galerkin space with upwinding principles used for discretizations of advection. We demonstrate the proposed discretization’s superior accuracy over other discretizations of anisotropic heat flux, achieving error [math] smaller for anisotropy ratio of [math], for closed field lines. The block matrix system is reordered and solved in an approach where the two advection operators are inverted using AMG solvers based on approximate ideal restriction, which is particularly efficient for upwind discontinuous Galerkin discretizations of advection. To ensure that the advection operators are nonsingular, in this paper we restrict ourselves to considering open (acyclic) magnetic field lines for the linear solvers. We demonstrate fast convergence of the proposed iterative solver in highly anisotropic regimes where other diffusion-based AMG methods fail.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m155918x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m155918x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Fast Algebraic Multigrid Solver and Accurate Discretization for Highly Anisotropic Heat Flux I: Open Field Lines
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1821-A1849, June 2024. Abstract. We present a novel solver technique for the anisotropic heat flux equation, aimed at the high level of anisotropy seen in magnetic confinement fusion plasmas. Such problems pose two major challenges: (i) discretization accuracy and (ii) efficient implicit linear solvers. We simultaneously address each of these challenges by constructing a new finite element discretization with excellent accuracy properties, tailored to a novel solver approach based on algebraic multigrid (AMG) methods designed for advective operators. We pose the problem in a mixed formulation, introducing the directional temperature gradient as an auxiliary variable. The temperature and auxiliary fields are discretized in a scalar discontinuous Galerkin space with upwinding principles used for discretizations of advection. We demonstrate the proposed discretization’s superior accuracy over other discretizations of anisotropic heat flux, achieving error [math] smaller for anisotropy ratio of [math], for closed field lines. The block matrix system is reordered and solved in an approach where the two advection operators are inverted using AMG solvers based on approximate ideal restriction, which is particularly efficient for upwind discontinuous Galerkin discretizations of advection. To ensure that the advection operators are nonsingular, in this paper we restrict ourselves to considering open (acyclic) magnetic field lines for the linear solvers. We demonstrate fast convergence of the proposed iterative solver in highly anisotropic regimes where other diffusion-based AMG methods fail.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.