An-Xu Luo, Hong-Li Liu, Guang-Xing Li, Sirong Pan and Dong-Ting Yang
{"title":"重力、湍流和磁场在大质量恒星形成云中的作用是什么?","authors":"An-Xu Luo, Hong-Li Liu, Guang-Xing Li, Sirong Pan and Dong-Ting Yang","doi":"10.1088/1674-4527/ad3ec8","DOIUrl":null,"url":null,"abstract":"To explore the potential role of gravity, turbulence and magnetic fields in high-mass star formation in molecular clouds, this study revisits the velocity dispersion–size (σ–L) and density–size (ρ–L) scalings and the associated turbulent energy spectrum using an extensive data sample. The sample includes various hierarchical density structures in high-mass star formation clouds, across scales of 0.01–100 pc. We observe σ ∝ L0.26 and ρ ∝ L−1.54 scalings, converging toward a virial equilibrium state. A nearly flat virial parameter–mass (αvir−M) distribution is seen across all density scales, with αvir values centered around unity, suggesting a global equilibrium maintained by the interplay between gravity and turbulence across multiple scales. Our turbulent energy spectrum (E(k)) analysis, based on the σ–L and ρ–L scalings, yields a characteristic E(k) ∝ k−1.52. These findings indicate the potential significance of gravity, turbulence, and possibly magnetic fields in regulating dynamics of molecular clouds and high-mass star formation therein.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"67 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is the Role of Gravity, Turbulence and Magnetic Fields in High-mass Star Formation Clouds?\",\"authors\":\"An-Xu Luo, Hong-Li Liu, Guang-Xing Li, Sirong Pan and Dong-Ting Yang\",\"doi\":\"10.1088/1674-4527/ad3ec8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To explore the potential role of gravity, turbulence and magnetic fields in high-mass star formation in molecular clouds, this study revisits the velocity dispersion–size (σ–L) and density–size (ρ–L) scalings and the associated turbulent energy spectrum using an extensive data sample. The sample includes various hierarchical density structures in high-mass star formation clouds, across scales of 0.01–100 pc. We observe σ ∝ L0.26 and ρ ∝ L−1.54 scalings, converging toward a virial equilibrium state. A nearly flat virial parameter–mass (αvir−M) distribution is seen across all density scales, with αvir values centered around unity, suggesting a global equilibrium maintained by the interplay between gravity and turbulence across multiple scales. Our turbulent energy spectrum (E(k)) analysis, based on the σ–L and ρ–L scalings, yields a characteristic E(k) ∝ k−1.52. These findings indicate the potential significance of gravity, turbulence, and possibly magnetic fields in regulating dynamics of molecular clouds and high-mass star formation therein.\",\"PeriodicalId\":54494,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad3ec8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad3ec8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
What is the Role of Gravity, Turbulence and Magnetic Fields in High-mass Star Formation Clouds?
To explore the potential role of gravity, turbulence and magnetic fields in high-mass star formation in molecular clouds, this study revisits the velocity dispersion–size (σ–L) and density–size (ρ–L) scalings and the associated turbulent energy spectrum using an extensive data sample. The sample includes various hierarchical density structures in high-mass star formation clouds, across scales of 0.01–100 pc. We observe σ ∝ L0.26 and ρ ∝ L−1.54 scalings, converging toward a virial equilibrium state. A nearly flat virial parameter–mass (αvir−M) distribution is seen across all density scales, with αvir values centered around unity, suggesting a global equilibrium maintained by the interplay between gravity and turbulence across multiple scales. Our turbulent energy spectrum (E(k)) analysis, based on the σ–L and ρ–L scalings, yields a characteristic E(k) ∝ k−1.52. These findings indicate the potential significance of gravity, turbulence, and possibly magnetic fields in regulating dynamics of molecular clouds and high-mass star formation therein.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods