应用成熟的计算技术在低数据量环境中确定潜在的 SARS-CoV-2 Nsp14-MTase 抑制剂

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
AkshatKumar Nigam, Matthew F. D. Hurley, Fengling Li, Eva Konkoľová, Martin Klíma, Jana Trylčová, Robert Pollice, Süleyman Selim Çinaroǧlu, Roni Levin-Konigsberg, Jasemine Handjaya, Matthieu Schapira, Irene Chau, Sumera Perveen, Ho-Leung Ng, H. Ümit Kaniskan, Yulin Han, Sukrit Singh, Christoph Gorgulla, Anshul Kundaje, Jian Jin, Vincent A. Voelz, Jan Weber, Radim Nencka, Evzen Boura, Masoud Vedadi and Alán Aspuru-Guzik
{"title":"应用成熟的计算技术在低数据量环境中确定潜在的 SARS-CoV-2 Nsp14-MTase 抑制剂","authors":"AkshatKumar Nigam, Matthew F. D. Hurley, Fengling Li, Eva Konkoľová, Martin Klíma, Jana Trylčová, Robert Pollice, Süleyman Selim Çinaroǧlu, Roni Levin-Konigsberg, Jasemine Handjaya, Matthieu Schapira, Irene Chau, Sumera Perveen, Ho-Leung Ng, H. Ümit Kaniskan, Yulin Han, Sukrit Singh, Christoph Gorgulla, Anshul Kundaje, Jian Jin, Vincent A. Voelz, Jan Weber, Radim Nencka, Evzen Boura, Masoud Vedadi and Alán Aspuru-Guzik","doi":"10.1039/D4DD00006D","DOIUrl":null,"url":null,"abstract":"<p >The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250 000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven candidates that inhibit the MTase activity of nsp14. Among these, one compound, NSC62033, demonstrated strong binding affinity to nsp14, exhibiting a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. Furthermore, our molecular dynamics simulations suggest potential new conformational states of the protein, with residues Phe367, Tyr368, and Gln354 in the binding pocket potentially playing a role in stabilizing interactions with novel ligands, though further validation is required. Our findings also indicate that metal coordination complexes may be important for the function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC<small><sub>50</sub></small> value of 70 ± 6 nM).</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1327-1341"},"PeriodicalIF":6.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00006d?page=search","citationCount":"0","resultStr":"{\"title\":\"Application of established computational techniques to identify potential SARS-CoV-2 Nsp14-MTase inhibitors in low data regimes†\",\"authors\":\"AkshatKumar Nigam, Matthew F. D. Hurley, Fengling Li, Eva Konkoľová, Martin Klíma, Jana Trylčová, Robert Pollice, Süleyman Selim Çinaroǧlu, Roni Levin-Konigsberg, Jasemine Handjaya, Matthieu Schapira, Irene Chau, Sumera Perveen, Ho-Leung Ng, H. Ümit Kaniskan, Yulin Han, Sukrit Singh, Christoph Gorgulla, Anshul Kundaje, Jian Jin, Vincent A. Voelz, Jan Weber, Radim Nencka, Evzen Boura, Masoud Vedadi and Alán Aspuru-Guzik\",\"doi\":\"10.1039/D4DD00006D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250 000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven candidates that inhibit the MTase activity of nsp14. Among these, one compound, NSC62033, demonstrated strong binding affinity to nsp14, exhibiting a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. Furthermore, our molecular dynamics simulations suggest potential new conformational states of the protein, with residues Phe367, Tyr368, and Gln354 in the binding pocket potentially playing a role in stabilizing interactions with novel ligands, though further validation is required. Our findings also indicate that metal coordination complexes may be important for the function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC<small><sub>50</sub></small> value of 70 ± 6 nM).</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 7\",\"pages\":\" 1327-1341\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00006d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00006d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00006d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由严重急性呼吸系统综合症(SARS)-CoV-2 病毒引起的 COVID-19 大流行在全球范围内造成了严重的发病率和死亡率。一种重要的病毒蛋白--非结构蛋白 14(nsp14)催化病毒 RNA 的甲基化,在病毒基因组复制和转录中起着关键作用。由于各种 SARS-CoV-2 变体中 nsp 区域的突变率较低,nsp14 已成为一个很有希望的治疗靶点。然而,发现潜在的抑制剂仍是一项挑战。在这项工作中,我们利用虚拟筛选和 NCI 开放化合物库(其中包含 25 万个可供全球研究人员免费使用的分子),介绍了一种快速高效鉴定潜在 nsp14 抑制剂的计算管道。引入的管道为早期药物发现提供了一种低成本高效率的方法,使研究人员能够在不产生合成费用的情况下评估有潜力的分子。我们的管线成功鉴定了 7 个抑制 nsp14 MTase 活性的候选化合物。其中,一个化合物 NSC62033 与 nsp14 的结合亲和力很强,解离常数为 427 ± 84 nM。此外,我们还通过分子动力学模拟对该蛋白的结构和功能有了新的认识。此外,我们的分子动力学模拟结果表明,该蛋白质有可能出现新的构象状态,结合口袋中的残基 Phe367、Tyr368 和 Gln354 有可能在稳定与新型配体的相互作用方面发挥作用,但这还需要进一步验证。我们的研究结果还表明,金属配位复合物可能对结合口袋的功能很重要。最后,我们展示了 nsp14-MTase 与 SS148 复合物(PDB:8BWU)的晶体结构解析图,SS148 是一种纳摩尔水平的强效甲基转移酶活性抑制剂(IC50 值为 70 ± 6 nM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of established computational techniques to identify potential SARS-CoV-2 Nsp14-MTase inhibitors in low data regimes†

Application of established computational techniques to identify potential SARS-CoV-2 Nsp14-MTase inhibitors in low data regimes†

Application of established computational techniques to identify potential SARS-CoV-2 Nsp14-MTase inhibitors in low data regimes†

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250 000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven candidates that inhibit the MTase activity of nsp14. Among these, one compound, NSC62033, demonstrated strong binding affinity to nsp14, exhibiting a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. Furthermore, our molecular dynamics simulations suggest potential new conformational states of the protein, with residues Phe367, Tyr368, and Gln354 in the binding pocket potentially playing a role in stabilizing interactions with novel ligands, though further validation is required. Our findings also indicate that metal coordination complexes may be important for the function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信