利用聚类对可比公司进行系统分析并计算股本成本

Mohammed Perves
{"title":"利用聚类对可比公司进行系统分析并计算股本成本","authors":"Mohammed Perves","doi":"arxiv-2405.12991","DOIUrl":null,"url":null,"abstract":"Computing cost of equity for private corporations and performing comparable\ncompany analysis (comps) for both public and private corporations is an\nintegral but tedious and time-consuming task, with important applications\nspanning the finance world, from valuations to internal planning. Performing\ncomps traditionally often times include high ambiguity and subjectivity,\nleading to unreliability and inconsistency. In this paper, I will present a\nsystematic and faster approach to compute cost of equity for private\ncorporations and perform comps for both public and private corporations using\nspectral and agglomerative clustering. This leads to a reduction in the time\nrequired to perform comps by orders of magnitude and entire process being more\nconsistent and reliable.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Comparable Company Analysis and Computation of Cost of Equity using Clustering\",\"authors\":\"Mohammed Perves\",\"doi\":\"arxiv-2405.12991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing cost of equity for private corporations and performing comparable\\ncompany analysis (comps) for both public and private corporations is an\\nintegral but tedious and time-consuming task, with important applications\\nspanning the finance world, from valuations to internal planning. Performing\\ncomps traditionally often times include high ambiguity and subjectivity,\\nleading to unreliability and inconsistency. In this paper, I will present a\\nsystematic and faster approach to compute cost of equity for private\\ncorporations and perform comps for both public and private corporations using\\nspectral and agglomerative clustering. This leads to a reduction in the time\\nrequired to perform comps by orders of magnitude and entire process being more\\nconsistent and reliable.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.12991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.12991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算私营公司的股本成本以及对上市和私营公司进行可比公司分析(comparablecompany analysis,comps)是一项不可或缺但又繁琐耗时的工作,其重要应用范围涵盖财务领域,从估值到内部规划。在传统上,进行比较分析往往具有高度的模糊性和主观性,从而导致不可靠和不一致。在本文中,我将提出一种系统而快速的方法来计算私营公司的股权成本,并使用光谱聚类和聚类聚类对公共和私营公司进行比较。这使得进行比较所需的时间减少了几个数量级,而且整个过程更加一致和可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic Comparable Company Analysis and Computation of Cost of Equity using Clustering
Computing cost of equity for private corporations and performing comparable company analysis (comps) for both public and private corporations is an integral but tedious and time-consuming task, with important applications spanning the finance world, from valuations to internal planning. Performing comps traditionally often times include high ambiguity and subjectivity, leading to unreliability and inconsistency. In this paper, I will present a systematic and faster approach to compute cost of equity for private corporations and perform comps for both public and private corporations using spectral and agglomerative clustering. This leads to a reduction in the time required to perform comps by orders of magnitude and entire process being more consistent and reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信