争分夺秒:化学问题的贝叶斯优化

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yifan Wu, Aron Walsh and Alex M. Ganose
{"title":"争分夺秒:化学问题的贝叶斯优化","authors":"Yifan Wu, Aron Walsh and Alex M. Ganose","doi":"10.1039/D3DD00234A","DOIUrl":null,"url":null,"abstract":"<p >What is the minimum number of experiments, or calculations, required to find an optimal solution? Relevant chemical problems range from identifying a compound with target functionality within a given phase space to controlling materials synthesis and device fabrication conditions. A common feature in this application domain is that both the dimensionality of the problems and the cost of evaluations are high. The selection of an appropriate optimisation technique is key, with standard choices including iterative (<em>e.g.</em> steepest descent) and heuristic (<em>e.g.</em> simulated annealing) approaches, which are complemented by a new generation of statistical machine learning methods. We introduce Bayesian optimisation and highlight recent success cases in materials research. The challenges of using machine learning with automated research workflows that produce small and noisy data sets are discussed. Finally, we outline opportunities for developments in multi-objective and parallel algorithms for robust and efficient search strategies.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 6","pages":" 1086-1100"},"PeriodicalIF":6.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d3dd00234a?page=search","citationCount":"0","resultStr":"{\"title\":\"Race to the bottom: Bayesian optimisation for chemical problems†\",\"authors\":\"Yifan Wu, Aron Walsh and Alex M. Ganose\",\"doi\":\"10.1039/D3DD00234A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >What is the minimum number of experiments, or calculations, required to find an optimal solution? Relevant chemical problems range from identifying a compound with target functionality within a given phase space to controlling materials synthesis and device fabrication conditions. A common feature in this application domain is that both the dimensionality of the problems and the cost of evaluations are high. The selection of an appropriate optimisation technique is key, with standard choices including iterative (<em>e.g.</em> steepest descent) and heuristic (<em>e.g.</em> simulated annealing) approaches, which are complemented by a new generation of statistical machine learning methods. We introduce Bayesian optimisation and highlight recent success cases in materials research. The challenges of using machine learning with automated research workflows that produce small and noisy data sets are discussed. Finally, we outline opportunities for developments in multi-objective and parallel algorithms for robust and efficient search strategies.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 6\",\"pages\":\" 1086-1100\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d3dd00234a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d3dd00234a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d3dd00234a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

找到最优解所需的最少实验或计算次数是多少?相关化学问题的范围很广,从在给定相空间内确定具有目标功能的化合物,到控制材料合成和设备制造条件。这一应用领域的共同特点是问题的维度和评估成本都很高。选择合适的优化技术是关键,标准选择包括迭代(如最陡坡下降)和启发式(如模拟退火)方法,并辅以新一代统计机器学习方法。在此,我们关注贝叶斯优化的进展。我们重点介绍了最近的成功案例,并讨论了将机器学习与自动化研究工作流程结合使用所面临的挑战,因为自动化研究工作流程产生的数据集较小且噪声较大。最后,我们概述了为实现稳健高效搜索而开发混合算法的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Race to the bottom: Bayesian optimisation for chemical problems†

Race to the bottom: Bayesian optimisation for chemical problems†

What is the minimum number of experiments, or calculations, required to find an optimal solution? Relevant chemical problems range from identifying a compound with target functionality within a given phase space to controlling materials synthesis and device fabrication conditions. A common feature in this application domain is that both the dimensionality of the problems and the cost of evaluations are high. The selection of an appropriate optimisation technique is key, with standard choices including iterative (e.g. steepest descent) and heuristic (e.g. simulated annealing) approaches, which are complemented by a new generation of statistical machine learning methods. We introduce Bayesian optimisation and highlight recent success cases in materials research. The challenges of using machine learning with automated research workflows that produce small and noisy data sets are discussed. Finally, we outline opportunities for developments in multi-objective and parallel algorithms for robust and efficient search strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信