轱辘单项式的舒尔-韦尔对偶性:通过舒尔代数的方法

Pub Date : 2024-05-23 DOI:10.1007/s00233-024-10434-w
Carlos A. M. André, Inês Legatheaux Martins
{"title":"轱辘单项式的舒尔-韦尔对偶性:通过舒尔代数的方法","authors":"Carlos A. M. André, Inês Legatheaux Martins","doi":"10.1007/s00233-024-10434-w","DOIUrl":null,"url":null,"abstract":"<p>The rook monoid, also known as the symmetric inverse monoid, is the archetypal structure when it comes to extend the principle of symmetry. In this paper, we establish a Schur–Weyl duality between this monoid and an extension of the classical Schur algebra, which we name the extended Schur algebra. We also explain how this relates to Solomon’s Schur–Weyl duality between the rook monoid and the general linear group and mention some advantages of our approach.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schur–Weyl dualities for the rook monoid: an approach via Schur algebras\",\"authors\":\"Carlos A. M. André, Inês Legatheaux Martins\",\"doi\":\"10.1007/s00233-024-10434-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rook monoid, also known as the symmetric inverse monoid, is the archetypal structure when it comes to extend the principle of symmetry. In this paper, we establish a Schur–Weyl duality between this monoid and an extension of the classical Schur algebra, which we name the extended Schur algebra. We also explain how this relates to Solomon’s Schur–Weyl duality between the rook monoid and the general linear group and mention some advantages of our approach.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10434-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10434-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在扩展对称性原理方面,"轱辘单体"(又称对称逆单体)是典型的结构。在本文中,我们在这个单元和经典舒尔代数的扩展之间建立了舒尔-韦尔对偶性,并将其命名为扩展舒尔代数。我们还解释了这与所罗门提出的轱辘单体和一般线性群之间的舒尔-韦尔对偶性之间的关系,并提到了我们的方法的一些优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Schur–Weyl dualities for the rook monoid: an approach via Schur algebras

The rook monoid, also known as the symmetric inverse monoid, is the archetypal structure when it comes to extend the principle of symmetry. In this paper, we establish a Schur–Weyl duality between this monoid and an extension of the classical Schur algebra, which we name the extended Schur algebra. We also explain how this relates to Solomon’s Schur–Weyl duality between the rook monoid and the general linear group and mention some advantages of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信