{"title":"标量电荷的自引力希格斯场","authors":"Yu. G. Ignat’ev","doi":"10.1134/S0040577924050088","DOIUrl":null,"url":null,"abstract":"<p> We study the self-gravitating Higgs field of a scalar charge. We show that in the zeroth and first approximation in the smallness of the scalar charge, the gravitational field of the scalar charge is described by the Schwarzschild–de Sitter metric with a cosmological constant determined by the vacuum potential of the Higgs field. An equation for the perturbation of the vacuum potential is obtained and studied. Particular exact solutions of the field equation are given. It is shown that in the case of a naked singularity, solutions of the field equation have the character of microscopic oscillations with a Compton wavelength. Asymptotic limit cases of the behavior of solutions are studied and their comparative analysis is carried out in relation to the Fisher solution. The averaging of microscopic oscillations of the scalar field is carried out and it it shown that at <span>\\(\\Lambda>0\\)</span> they make a negative contribution to the macroscopic energy of the scalar field, reducing the observed value of the black hole mass. A computer simulation of a scalar field demonstrates various types of the behavior of solutions. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-gravitating Higgs field of scalar charge\",\"authors\":\"Yu. G. Ignat’ev\",\"doi\":\"10.1134/S0040577924050088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the self-gravitating Higgs field of a scalar charge. We show that in the zeroth and first approximation in the smallness of the scalar charge, the gravitational field of the scalar charge is described by the Schwarzschild–de Sitter metric with a cosmological constant determined by the vacuum potential of the Higgs field. An equation for the perturbation of the vacuum potential is obtained and studied. Particular exact solutions of the field equation are given. It is shown that in the case of a naked singularity, solutions of the field equation have the character of microscopic oscillations with a Compton wavelength. Asymptotic limit cases of the behavior of solutions are studied and their comparative analysis is carried out in relation to the Fisher solution. The averaging of microscopic oscillations of the scalar field is carried out and it it shown that at <span>\\\\(\\\\Lambda>0\\\\)</span> they make a negative contribution to the macroscopic energy of the scalar field, reducing the observed value of the black hole mass. A computer simulation of a scalar field demonstrates various types of the behavior of solutions. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924050088\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924050088","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
We study the self-gravitating Higgs field of a scalar charge. We show that in the zeroth and first approximation in the smallness of the scalar charge, the gravitational field of the scalar charge is described by the Schwarzschild–de Sitter metric with a cosmological constant determined by the vacuum potential of the Higgs field. An equation for the perturbation of the vacuum potential is obtained and studied. Particular exact solutions of the field equation are given. It is shown that in the case of a naked singularity, solutions of the field equation have the character of microscopic oscillations with a Compton wavelength. Asymptotic limit cases of the behavior of solutions are studied and their comparative analysis is carried out in relation to the Fisher solution. The averaging of microscopic oscillations of the scalar field is carried out and it it shown that at \(\Lambda>0\) they make a negative contribution to the macroscopic energy of the scalar field, reducing the observed value of the black hole mass. A computer simulation of a scalar field demonstrates various types of the behavior of solutions.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.