多路数据的子空间判别

IF 1.3 4区 数学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hayato Itoh, Atsushi Imiya
{"title":"多路数据的子空间判别","authors":"Hayato Itoh, Atsushi Imiya","doi":"10.1007/s10851-024-01188-9","DOIUrl":null,"url":null,"abstract":"<p>Sampled values of volumetric data are expressed as third-order tensors. Object-oriented data analysis requires us to process and analyse volumetric data without embedding into a higher-dimensional vector space. Multiway forms of volumetric data require quantitative methods for the discrimination of multiway forms. Tensor principal component analysis is an extension of image singular value decomposition for planar images to higher-dimensional images. It is an efficient discrimination analysis method when used with the multilinear subspace method. The multilinear subspace method enables us to analyse spatial textures of volumetric images and spatiotemporal variations of volumetric video sequences. We define a distance metric for subspaces of multiway data arrays using the transport between two probability measures on the Stiefel manifold. Numerical examples show that the Stiefel distance is superior to the Euclidean distance, Grassmann distance and projection-based similarity for the longitudinal analysis of volumetric sequences.</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":"31 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subspace Discrimination for Multiway Data\",\"authors\":\"Hayato Itoh, Atsushi Imiya\",\"doi\":\"10.1007/s10851-024-01188-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sampled values of volumetric data are expressed as third-order tensors. Object-oriented data analysis requires us to process and analyse volumetric data without embedding into a higher-dimensional vector space. Multiway forms of volumetric data require quantitative methods for the discrimination of multiway forms. Tensor principal component analysis is an extension of image singular value decomposition for planar images to higher-dimensional images. It is an efficient discrimination analysis method when used with the multilinear subspace method. The multilinear subspace method enables us to analyse spatial textures of volumetric images and spatiotemporal variations of volumetric video sequences. We define a distance metric for subspaces of multiway data arrays using the transport between two probability measures on the Stiefel manifold. Numerical examples show that the Stiefel distance is superior to the Euclidean distance, Grassmann distance and projection-based similarity for the longitudinal analysis of volumetric sequences.</p>\",\"PeriodicalId\":16196,\"journal\":{\"name\":\"Journal of Mathematical Imaging and Vision\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Imaging and Vision\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10851-024-01188-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01188-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

体积数据的采样值以三阶张量表示。面向对象的数据分析要求我们在不嵌入高维向量空间的情况下处理和分析体积数据。体积数据的多向形式需要量化方法来区分多向形式。张量主成分分析是平面图像奇异值分解法向高维图像的扩展。它与多线性子空间法配合使用,是一种高效的判别分析方法。多线性子空间方法使我们能够分析体积图像的空间纹理和体积视频序列的时空变化。我们利用 Stiefel 流形上两个概率度量之间的传输,定义了多路数据阵列子空间的距离度量。数值示例表明,在对体积序列进行纵向分析时,Stiefel 距离优于欧氏距离、格拉斯曼距离和基于投影的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Subspace Discrimination for Multiway Data

Subspace Discrimination for Multiway Data

Sampled values of volumetric data are expressed as third-order tensors. Object-oriented data analysis requires us to process and analyse volumetric data without embedding into a higher-dimensional vector space. Multiway forms of volumetric data require quantitative methods for the discrimination of multiway forms. Tensor principal component analysis is an extension of image singular value decomposition for planar images to higher-dimensional images. It is an efficient discrimination analysis method when used with the multilinear subspace method. The multilinear subspace method enables us to analyse spatial textures of volumetric images and spatiotemporal variations of volumetric video sequences. We define a distance metric for subspaces of multiway data arrays using the transport between two probability measures on the Stiefel manifold. Numerical examples show that the Stiefel distance is superior to the Euclidean distance, Grassmann distance and projection-based similarity for the longitudinal analysis of volumetric sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision 工程技术-计算机:人工智能
CiteScore
4.30
自引率
5.00%
发文量
70
审稿时长
3.3 months
期刊介绍: The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles. Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications. The scope of the journal includes: computational models of vision; imaging algebra and mathematical morphology mathematical methods in reconstruction, compactification, and coding filter theory probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science inverse optics wave theory. Specific application areas of interest include, but are not limited to: all aspects of image formation and representation medical, biological, industrial, geophysical, astronomical and military imaging image analysis and image understanding parallel and distributed computing computer vision architecture design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信