通过路径依赖蒙特卡洛模拟预测加密货币价格

Ayush Singh, Anshu K. Jha, Amit N. Kumar
{"title":"通过路径依赖蒙特卡洛模拟预测加密货币价格","authors":"Ayush Singh, Anshu K. Jha, Amit N. Kumar","doi":"arxiv-2405.12988","DOIUrl":null,"url":null,"abstract":"In this paper, our focus lies on the Merton's jump diffusion model, employing\njump processes characterized by the compound Poisson process. Our primary\nobjective is to forecast the drift and volatility of the model using a variety\nof methodologies. We adopt an approach that involves implementing different\ndrift, volatility, and jump terms within the model through various machine\nlearning techniques, traditional methods, and statistical methods on\nprice-volume data. Additionally, we introduce a path-dependent Monte Carlo\nsimulation to model cryptocurrency prices, taking into account the volatility\nand unexpected jumps in prices.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Cryptocurrency Prices through a Path Dependent Monte Carlo Simulation\",\"authors\":\"Ayush Singh, Anshu K. Jha, Amit N. Kumar\",\"doi\":\"arxiv-2405.12988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, our focus lies on the Merton's jump diffusion model, employing\\njump processes characterized by the compound Poisson process. Our primary\\nobjective is to forecast the drift and volatility of the model using a variety\\nof methodologies. We adopt an approach that involves implementing different\\ndrift, volatility, and jump terms within the model through various machine\\nlearning techniques, traditional methods, and statistical methods on\\nprice-volume data. Additionally, we introduce a path-dependent Monte Carlo\\nsimulation to model cryptocurrency prices, taking into account the volatility\\nand unexpected jumps in prices.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.12988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.12988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是默顿跃迁扩散模型,它采用了以复合泊松过程为特征的跃迁过程。我们的主要目标是利用各种方法预测模型的漂移和波动。我们采用的方法包括通过各种机器学习技术、传统方法和价格-成交量数据统计方法,在模型中实现不同的漂移、波动和跳跃项。此外,我们还引入了一种路径依赖蒙特卡洛模拟来模拟加密货币的价格,其中考虑到了价格的波动性和意外跳跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Cryptocurrency Prices through a Path Dependent Monte Carlo Simulation
In this paper, our focus lies on the Merton's jump diffusion model, employing jump processes characterized by the compound Poisson process. Our primary objective is to forecast the drift and volatility of the model using a variety of methodologies. We adopt an approach that involves implementing different drift, volatility, and jump terms within the model through various machine learning techniques, traditional methods, and statistical methods on price-volume data. Additionally, we introduce a path-dependent Monte Carlo simulation to model cryptocurrency prices, taking into account the volatility and unexpected jumps in prices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信