{"title":"算术级数中 p 模的椭圆曲线的循环性和指数","authors":"Peng-Jie Wong","doi":"10.1093/qmath/haae029","DOIUrl":null,"url":null,"abstract":"In this article, we study the cyclicity problem of elliptic curves $E/\\mathbb{Q}$ modulo primes in a given arithmetic progression. We extend the recent work of Akbal and Güloğlu by proving an unconditional asymptotic for such a cyclicity problem over arithmetic progressions for elliptic curves E, which also presents a generalization of the previous works of Akbary, Cojocaru, M.R. Murty, V.K. Murty and Serre. In addition, we refine the conditional estimates of Akbal and Güloğlu, which gives log-power savings (for small moduli) and consequently improves the work of Cojocaru and M.R. Murty. Moreover, we study the average exponent of E modulo primes in a given arithmetic progression and obtain several conditional and unconditional estimates, extending the previous works of Freiberg, Kim, Kurlberg and Wu.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"162 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclicity and Exponent of Elliptic Curves Modulo p in Arithmetic Progressions\",\"authors\":\"Peng-Jie Wong\",\"doi\":\"10.1093/qmath/haae029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the cyclicity problem of elliptic curves $E/\\\\mathbb{Q}$ modulo primes in a given arithmetic progression. We extend the recent work of Akbal and Güloğlu by proving an unconditional asymptotic for such a cyclicity problem over arithmetic progressions for elliptic curves E, which also presents a generalization of the previous works of Akbary, Cojocaru, M.R. Murty, V.K. Murty and Serre. In addition, we refine the conditional estimates of Akbal and Güloğlu, which gives log-power savings (for small moduli) and consequently improves the work of Cojocaru and M.R. Murty. Moreover, we study the average exponent of E modulo primes in a given arithmetic progression and obtain several conditional and unconditional estimates, extending the previous works of Freiberg, Kim, Kurlberg and Wu.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haae029\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cyclicity and Exponent of Elliptic Curves Modulo p in Arithmetic Progressions
In this article, we study the cyclicity problem of elliptic curves $E/\mathbb{Q}$ modulo primes in a given arithmetic progression. We extend the recent work of Akbal and Güloğlu by proving an unconditional asymptotic for such a cyclicity problem over arithmetic progressions for elliptic curves E, which also presents a generalization of the previous works of Akbary, Cojocaru, M.R. Murty, V.K. Murty and Serre. In addition, we refine the conditional estimates of Akbal and Güloğlu, which gives log-power savings (for small moduli) and consequently improves the work of Cojocaru and M.R. Murty. Moreover, we study the average exponent of E modulo primes in a given arithmetic progression and obtain several conditional and unconditional estimates, extending the previous works of Freiberg, Kim, Kurlberg and Wu.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.