受 Cardinality 约束的子模块最大化的 0.385$$ 实用近似值

Murad Tukan, Loay Mualem, Moran Feldman
{"title":"受 Cardinality 约束的子模块最大化的 0.385$$ 实用近似值","authors":"Murad Tukan, Loay Mualem, Moran Feldman","doi":"arxiv-2405.13994","DOIUrl":null,"url":null,"abstract":"Non-monotone constrained submodular maximization plays a crucial role in\nvarious machine learning applications. However, existing algorithms often\nstruggle with a trade-off between approximation guarantees and practical\nefficiency. The current state-of-the-art is a recent $0.401$-approximation\nalgorithm, but its computational complexity makes it highly impractical. The\nbest practical algorithms for the problem only guarantee $1/e$-approximation.\nIn this work, we present a novel algorithm for submodular maximization subject\nto a cardinality constraint that combines a guarantee of $0.385$-approximation\nwith a low and practical query complexity of $O(n+k^2)$. Furthermore, we\nevaluate the empirical performance of our algorithm in experiments based on\nvarious machine learning applications, including Movie Recommendation, Image\nSummarization, and more. These experiments demonstrate the efficacy of our\napproach.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical $0.385$-Approximation for Submodular Maximization Subject to a Cardinality Constraint\",\"authors\":\"Murad Tukan, Loay Mualem, Moran Feldman\",\"doi\":\"arxiv-2405.13994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-monotone constrained submodular maximization plays a crucial role in\\nvarious machine learning applications. However, existing algorithms often\\nstruggle with a trade-off between approximation guarantees and practical\\nefficiency. The current state-of-the-art is a recent $0.401$-approximation\\nalgorithm, but its computational complexity makes it highly impractical. The\\nbest practical algorithms for the problem only guarantee $1/e$-approximation.\\nIn this work, we present a novel algorithm for submodular maximization subject\\nto a cardinality constraint that combines a guarantee of $0.385$-approximation\\nwith a low and practical query complexity of $O(n+k^2)$. Furthermore, we\\nevaluate the empirical performance of our algorithm in experiments based on\\nvarious machine learning applications, including Movie Recommendation, Image\\nSummarization, and more. These experiments demonstrate the efficacy of our\\napproach.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在各种机器学习应用中,非单调约束子模最大化起着至关重要的作用。然而,现有算法经常在近似保证和实用效率之间权衡挣扎。目前最先进的算法是一种最新的 0.401 美元近似算法,但其计算复杂度使其非常不实用。在这项研究中,我们提出了一种新的算法,用于在卡方约束条件下的子模块最大化,该算法既保证了 0.385 美元的近似率,又具有较低且实用的查询复杂度(O(n+k^2)美元)。此外,我们还在基于各种机器学习应用的实验中评估了我们算法的经验性能,包括电影推荐、图像摘要等。这些实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical $0.385$-Approximation for Submodular Maximization Subject to a Cardinality Constraint
Non-monotone constrained submodular maximization plays a crucial role in various machine learning applications. However, existing algorithms often struggle with a trade-off between approximation guarantees and practical efficiency. The current state-of-the-art is a recent $0.401$-approximation algorithm, but its computational complexity makes it highly impractical. The best practical algorithms for the problem only guarantee $1/e$-approximation. In this work, we present a novel algorithm for submodular maximization subject to a cardinality constraint that combines a guarantee of $0.385$-approximation with a low and practical query complexity of $O(n+k^2)$. Furthermore, we evaluate the empirical performance of our algorithm in experiments based on various machine learning applications, including Movie Recommendation, Image Summarization, and more. These experiments demonstrate the efficacy of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信