弱混合衍射的反分类结果

IF 1.3 2区 数学 Q1 MATHEMATICS
Philipp Kunde
{"title":"弱混合衍射的反分类结果","authors":"Philipp Kunde","doi":"10.1007/s00208-024-02890-0","DOIUrl":null,"url":null,"abstract":"<p>We extend anti-classification results in ergodic theory to the collection of weakly mixing systems by proving that the isomorphism relation as well as the Kakutani equivalence relation of weakly mixing invertible measure-preserving transformations are not Borel sets. This shows in a precise way that classification of weakly mixing systems up to isomorphism or Kakutani equivalence is impossible in terms of computable invariants, even with a very inclusive understanding of “computability”. We even obtain these anti-classification results for weakly mixing area-preserving smooth diffeomorphisms on compact surfaces admitting a non-trivial circle action as well as real-analytic diffeomorphisms on the 2-torus.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"35 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-classification results for weakly mixing diffeomorphisms\",\"authors\":\"Philipp Kunde\",\"doi\":\"10.1007/s00208-024-02890-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend anti-classification results in ergodic theory to the collection of weakly mixing systems by proving that the isomorphism relation as well as the Kakutani equivalence relation of weakly mixing invertible measure-preserving transformations are not Borel sets. This shows in a precise way that classification of weakly mixing systems up to isomorphism or Kakutani equivalence is impossible in terms of computable invariants, even with a very inclusive understanding of “computability”. We even obtain these anti-classification results for weakly mixing area-preserving smooth diffeomorphisms on compact surfaces admitting a non-trivial circle action as well as real-analytic diffeomorphisms on the 2-torus.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02890-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02890-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们把遍历理论中的反分类结果扩展到弱混合系统集合,证明弱混合可逆保度量变换的同构关系和角谷等价关系都不是伯尔集合。这就精确地表明,即使对 "可计算性 "的理解具有很强的包容性,也不可能用可计算不变式来对弱混合系统进行直到同构或角谷等价的分类。我们甚至还得到了这些反分类结果,这些结果适用于紧凑曲面上的弱混合保面积光滑差分变形,它允许一个非难圆作用,以及 2-Torus 上的实解析差分变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anti-classification results for weakly mixing diffeomorphisms

Anti-classification results for weakly mixing diffeomorphisms

We extend anti-classification results in ergodic theory to the collection of weakly mixing systems by proving that the isomorphism relation as well as the Kakutani equivalence relation of weakly mixing invertible measure-preserving transformations are not Borel sets. This shows in a precise way that classification of weakly mixing systems up to isomorphism or Kakutani equivalence is impossible in terms of computable invariants, even with a very inclusive understanding of “computability”. We even obtain these anti-classification results for weakly mixing area-preserving smooth diffeomorphisms on compact surfaces admitting a non-trivial circle action as well as real-analytic diffeomorphisms on the 2-torus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信