R. Lechner, P. Motakis, P. F. X. Müller, Th. Schlumprecht
{"title":"双参数哈氏系统哈代空间上的乘法器","authors":"R. Lechner, P. Motakis, P. F. X. Müller, Th. Schlumprecht","doi":"10.1007/s00208-024-02887-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((h_I)\\)</span> denote the standard Haar system on [0, 1], indexed by <span>\\(I\\in \\mathcal {D}\\)</span>, the set of dyadic intervals and <span>\\(h_I\\otimes h_J\\)</span> denote the tensor product <span>\\((s,t)\\mapsto h_I(s) h_J(t)\\)</span>, <span>\\(I,J\\in \\mathcal {D}\\)</span>. We consider a class of two-parameter function spaces which are completions of the linear span <span>\\(\\mathcal {V}(\\delta ^2)\\)</span> of <span>\\(h_I\\otimes h_J\\)</span>, <span>\\(I,J\\in \\mathcal {D}\\)</span>. This class contains all the spaces of the form <i>X</i>(<i>Y</i>), where <i>X</i> and <i>Y</i> are either the Lebesgue spaces <span>\\(L^p[0,1]\\)</span> or the Hardy spaces <span>\\(H^p[0,1]\\)</span>, <span>\\(1\\le p < \\infty \\)</span>. We say that <span>\\(D:X(Y)\\rightarrow X(Y)\\)</span> is a Haar multiplier if <span>\\(D(h_I\\otimes h_J) = d_{I,J} h_I\\otimes h_J\\)</span>, where <span>\\(d_{I,J}\\in \\mathbb {R}\\)</span>, and ask which more elementary operators factor through <i>D</i>. A decisive role is played by the <i>Capon projection</i> <span>\\(\\mathcal {C}:\\mathcal {V}(\\delta ^2)\\rightarrow \\mathcal {V}(\\delta ^2)\\)</span> given by <span>\\(\\mathcal {C} h_I\\otimes h_J = h_I\\otimes h_J\\)</span> if <span>\\(|I|\\le |J|\\)</span>, and <span>\\(\\mathcal {C} h_I\\otimes h_J = 0\\)</span> if <span>\\(|I| > |J|\\)</span>, as our main result highlights: Given any bounded Haar multiplier <span>\\(D:X(Y)\\rightarrow X(Y)\\)</span>, there exist <span>\\(\\lambda ,\\mu \\in \\mathbb {R}\\)</span> such that </p><span>$$\\begin{aligned} \\lambda \\mathcal {C} + \\mu ({{\\,\\textrm{Id}\\,}}-\\mathcal {C})\\text { approximately 1-projectionally factors through }D, \\end{aligned}$$</span><p>i.e., for all <span>\\(\\eta > 0\\)</span>, there exist bounded operators <i>A</i>, <i>B</i> so that <i>AB</i> is the identity operator <span>\\({{\\,\\textrm{Id}\\,}}\\)</span>, <span>\\(\\Vert A\\Vert \\cdot \\Vert B\\Vert = 1\\)</span> and <span>\\(\\Vert \\lambda \\mathcal {C} + \\mu ({{\\,\\textrm{Id}\\,}}-\\mathcal {C}) - ADB\\Vert < \\eta \\)</span>. Additionally, if <span>\\(\\mathcal {C}\\)</span> is unbounded on <i>X</i>(<i>Y</i>), then <span>\\(\\lambda = \\mu \\)</span> and then <span>\\({{\\,\\textrm{Id}\\,}}\\)</span> either factors through <i>D</i> or <span>\\({{\\,\\textrm{Id}\\,}}-D\\)</span>.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"68 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multipliers on bi-parameter Haar system Hardy spaces\",\"authors\":\"R. Lechner, P. Motakis, P. F. X. Müller, Th. Schlumprecht\",\"doi\":\"10.1007/s00208-024-02887-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\((h_I)\\\\)</span> denote the standard Haar system on [0, 1], indexed by <span>\\\\(I\\\\in \\\\mathcal {D}\\\\)</span>, the set of dyadic intervals and <span>\\\\(h_I\\\\otimes h_J\\\\)</span> denote the tensor product <span>\\\\((s,t)\\\\mapsto h_I(s) h_J(t)\\\\)</span>, <span>\\\\(I,J\\\\in \\\\mathcal {D}\\\\)</span>. We consider a class of two-parameter function spaces which are completions of the linear span <span>\\\\(\\\\mathcal {V}(\\\\delta ^2)\\\\)</span> of <span>\\\\(h_I\\\\otimes h_J\\\\)</span>, <span>\\\\(I,J\\\\in \\\\mathcal {D}\\\\)</span>. This class contains all the spaces of the form <i>X</i>(<i>Y</i>), where <i>X</i> and <i>Y</i> are either the Lebesgue spaces <span>\\\\(L^p[0,1]\\\\)</span> or the Hardy spaces <span>\\\\(H^p[0,1]\\\\)</span>, <span>\\\\(1\\\\le p < \\\\infty \\\\)</span>. We say that <span>\\\\(D:X(Y)\\\\rightarrow X(Y)\\\\)</span> is a Haar multiplier if <span>\\\\(D(h_I\\\\otimes h_J) = d_{I,J} h_I\\\\otimes h_J\\\\)</span>, where <span>\\\\(d_{I,J}\\\\in \\\\mathbb {R}\\\\)</span>, and ask which more elementary operators factor through <i>D</i>. A decisive role is played by the <i>Capon projection</i> <span>\\\\(\\\\mathcal {C}:\\\\mathcal {V}(\\\\delta ^2)\\\\rightarrow \\\\mathcal {V}(\\\\delta ^2)\\\\)</span> given by <span>\\\\(\\\\mathcal {C} h_I\\\\otimes h_J = h_I\\\\otimes h_J\\\\)</span> if <span>\\\\(|I|\\\\le |J|\\\\)</span>, and <span>\\\\(\\\\mathcal {C} h_I\\\\otimes h_J = 0\\\\)</span> if <span>\\\\(|I| > |J|\\\\)</span>, as our main result highlights: Given any bounded Haar multiplier <span>\\\\(D:X(Y)\\\\rightarrow X(Y)\\\\)</span>, there exist <span>\\\\(\\\\lambda ,\\\\mu \\\\in \\\\mathbb {R}\\\\)</span> such that </p><span>$$\\\\begin{aligned} \\\\lambda \\\\mathcal {C} + \\\\mu ({{\\\\,\\\\textrm{Id}\\\\,}}-\\\\mathcal {C})\\\\text { approximately 1-projectionally factors through }D, \\\\end{aligned}$$</span><p>i.e., for all <span>\\\\(\\\\eta > 0\\\\)</span>, there exist bounded operators <i>A</i>, <i>B</i> so that <i>AB</i> is the identity operator <span>\\\\({{\\\\,\\\\textrm{Id}\\\\,}}\\\\)</span>, <span>\\\\(\\\\Vert A\\\\Vert \\\\cdot \\\\Vert B\\\\Vert = 1\\\\)</span> and <span>\\\\(\\\\Vert \\\\lambda \\\\mathcal {C} + \\\\mu ({{\\\\,\\\\textrm{Id}\\\\,}}-\\\\mathcal {C}) - ADB\\\\Vert < \\\\eta \\\\)</span>. Additionally, if <span>\\\\(\\\\mathcal {C}\\\\)</span> is unbounded on <i>X</i>(<i>Y</i>), then <span>\\\\(\\\\lambda = \\\\mu \\\\)</span> and then <span>\\\\({{\\\\,\\\\textrm{Id}\\\\,}}\\\\)</span> either factors through <i>D</i> or <span>\\\\({{\\\\,\\\\textrm{Id}\\\\,}}-D\\\\)</span>.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02887-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02887-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让((h_I))表示[0, 1]上的标准哈尔系统,由(I\in \mathcal {D}\)索引,即二元区间的集合,而(h_I\otimes h_J\)表示张量积(((s,t)映射到 h_I(s) h_J(t)),(I,J\in \mathcal {D}\)。我们考虑一类双参数函数空间,它们是 \(\mathcal {V}(\delta ^2)\)的线性跨度 \(h_I\otimes h_J\), \(I,J\in\mathcal {D}\) 的补全。这一类包含所有形式为X(Y)的空间,其中X和Y要么是Lebesgue空间\(L^p[0,1]\),要么是Hardy空间\(H^p[0,1]\), \(1\le p <\infty \)。如果 \(D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J\), 其中 \(d_{I,J}\in \mathbb {R}/),我们就说\(D:X(Y)\rightarrow X(Y)\)是一个哈氏乘法器,并询问哪些更基本的算子通过 D 进行因子运算。卡彭投影(Capon projection)起着决定性的作用:\如果\(|I|\le |J|\),那么由\(\mathcal {C} h_I\otimes h_J = h_I\otimes h_J\) 给出;如果\(|I| >;|J|\),正如我们的主要结果所强调的那样:给定任何有界哈氏乘法器(D:X(Y)\rightarrow X(Y)\),存在(\lambda ,\mu\in\mathbb{R}\),使得$$\begin{aligned}。\lambda \mathcal {C}+ ({{\textrm{Id}\}}-\mathcal {C})text { approximately 1-projectionally factors through }D, \end{aligned}$$也就是说、for all \(\eta > 0\), there exist bounded operators A, B so that AB is the identity operator \({{\,\textrm{Id}\,}}),\(\Vert A\Vert \cdot \Vert B\Vert = 1\) and\(\Vert \lambda \mathcal {C})+ ({{\textrm{Id}\,}}-\mathcal {C})- ADB\Vert < (eta \)。此外,如果 \(\mathcal {C}\) 在 X(Y) 上是无界的,那么 \(\lambda = \mu \),然后 \({{\textrm{Id}\,}}\) 要么通过 D 因子,要么通过 \({{\textrm{Id}\,}}-D\) 因子。
Multipliers on bi-parameter Haar system Hardy spaces
Let \((h_I)\) denote the standard Haar system on [0, 1], indexed by \(I\in \mathcal {D}\), the set of dyadic intervals and \(h_I\otimes h_J\) denote the tensor product \((s,t)\mapsto h_I(s) h_J(t)\), \(I,J\in \mathcal {D}\). We consider a class of two-parameter function spaces which are completions of the linear span \(\mathcal {V}(\delta ^2)\) of \(h_I\otimes h_J\), \(I,J\in \mathcal {D}\). This class contains all the spaces of the form X(Y), where X and Y are either the Lebesgue spaces \(L^p[0,1]\) or the Hardy spaces \(H^p[0,1]\), \(1\le p < \infty \). We say that \(D:X(Y)\rightarrow X(Y)\) is a Haar multiplier if \(D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J\), where \(d_{I,J}\in \mathbb {R}\), and ask which more elementary operators factor through D. A decisive role is played by the Capon projection\(\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)\) given by \(\mathcal {C} h_I\otimes h_J = h_I\otimes h_J\) if \(|I|\le |J|\), and \(\mathcal {C} h_I\otimes h_J = 0\) if \(|I| > |J|\), as our main result highlights: Given any bounded Haar multiplier \(D:X(Y)\rightarrow X(Y)\), there exist \(\lambda ,\mu \in \mathbb {R}\) such that
$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$
i.e., for all \(\eta > 0\), there exist bounded operators A, B so that AB is the identity operator \({{\,\textrm{Id}\,}}\), \(\Vert A\Vert \cdot \Vert B\Vert = 1\) and \(\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta \). Additionally, if \(\mathcal {C}\) is unbounded on X(Y), then \(\lambda = \mu \) and then \({{\,\textrm{Id}\,}}\) either factors through D or \({{\,\textrm{Id}\,}}-D\).
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.