双参数哈氏系统哈代空间上的乘法器

IF 1.3 2区 数学 Q1 MATHEMATICS
R. Lechner, P. Motakis, P. F. X. Müller, Th. Schlumprecht
{"title":"双参数哈氏系统哈代空间上的乘法器","authors":"R. Lechner, P. Motakis, P. F. X. Müller, Th. Schlumprecht","doi":"10.1007/s00208-024-02887-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((h_I)\\)</span> denote the standard Haar system on [0, 1], indexed by <span>\\(I\\in \\mathcal {D}\\)</span>, the set of dyadic intervals and <span>\\(h_I\\otimes h_J\\)</span> denote the tensor product <span>\\((s,t)\\mapsto h_I(s) h_J(t)\\)</span>, <span>\\(I,J\\in \\mathcal {D}\\)</span>. We consider a class of two-parameter function spaces which are completions of the linear span <span>\\(\\mathcal {V}(\\delta ^2)\\)</span> of <span>\\(h_I\\otimes h_J\\)</span>, <span>\\(I,J\\in \\mathcal {D}\\)</span>. This class contains all the spaces of the form <i>X</i>(<i>Y</i>), where <i>X</i> and <i>Y</i> are either the Lebesgue spaces <span>\\(L^p[0,1]\\)</span> or the Hardy spaces <span>\\(H^p[0,1]\\)</span>, <span>\\(1\\le p &lt; \\infty \\)</span>. We say that <span>\\(D:X(Y)\\rightarrow X(Y)\\)</span> is a Haar multiplier if <span>\\(D(h_I\\otimes h_J) = d_{I,J} h_I\\otimes h_J\\)</span>, where <span>\\(d_{I,J}\\in \\mathbb {R}\\)</span>, and ask which more elementary operators factor through <i>D</i>. A decisive role is played by the <i>Capon projection</i> <span>\\(\\mathcal {C}:\\mathcal {V}(\\delta ^2)\\rightarrow \\mathcal {V}(\\delta ^2)\\)</span> given by <span>\\(\\mathcal {C} h_I\\otimes h_J = h_I\\otimes h_J\\)</span> if <span>\\(|I|\\le |J|\\)</span>, and <span>\\(\\mathcal {C} h_I\\otimes h_J = 0\\)</span> if <span>\\(|I| &gt; |J|\\)</span>, as our main result highlights: Given any bounded Haar multiplier <span>\\(D:X(Y)\\rightarrow X(Y)\\)</span>, there exist <span>\\(\\lambda ,\\mu \\in \\mathbb {R}\\)</span> such that </p><span>$$\\begin{aligned} \\lambda \\mathcal {C} + \\mu ({{\\,\\textrm{Id}\\,}}-\\mathcal {C})\\text { approximately 1-projectionally factors through }D, \\end{aligned}$$</span><p>i.e., for all <span>\\(\\eta &gt; 0\\)</span>, there exist bounded operators <i>A</i>, <i>B</i> so that <i>AB</i> is the identity operator <span>\\({{\\,\\textrm{Id}\\,}}\\)</span>, <span>\\(\\Vert A\\Vert \\cdot \\Vert B\\Vert = 1\\)</span> and <span>\\(\\Vert \\lambda \\mathcal {C} + \\mu ({{\\,\\textrm{Id}\\,}}-\\mathcal {C}) - ADB\\Vert &lt; \\eta \\)</span>. Additionally, if <span>\\(\\mathcal {C}\\)</span> is unbounded on <i>X</i>(<i>Y</i>), then <span>\\(\\lambda = \\mu \\)</span> and then <span>\\({{\\,\\textrm{Id}\\,}}\\)</span> either factors through <i>D</i> or <span>\\({{\\,\\textrm{Id}\\,}}-D\\)</span>.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"68 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multipliers on bi-parameter Haar system Hardy spaces\",\"authors\":\"R. Lechner, P. Motakis, P. F. X. Müller, Th. Schlumprecht\",\"doi\":\"10.1007/s00208-024-02887-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\((h_I)\\\\)</span> denote the standard Haar system on [0, 1], indexed by <span>\\\\(I\\\\in \\\\mathcal {D}\\\\)</span>, the set of dyadic intervals and <span>\\\\(h_I\\\\otimes h_J\\\\)</span> denote the tensor product <span>\\\\((s,t)\\\\mapsto h_I(s) h_J(t)\\\\)</span>, <span>\\\\(I,J\\\\in \\\\mathcal {D}\\\\)</span>. We consider a class of two-parameter function spaces which are completions of the linear span <span>\\\\(\\\\mathcal {V}(\\\\delta ^2)\\\\)</span> of <span>\\\\(h_I\\\\otimes h_J\\\\)</span>, <span>\\\\(I,J\\\\in \\\\mathcal {D}\\\\)</span>. This class contains all the spaces of the form <i>X</i>(<i>Y</i>), where <i>X</i> and <i>Y</i> are either the Lebesgue spaces <span>\\\\(L^p[0,1]\\\\)</span> or the Hardy spaces <span>\\\\(H^p[0,1]\\\\)</span>, <span>\\\\(1\\\\le p &lt; \\\\infty \\\\)</span>. We say that <span>\\\\(D:X(Y)\\\\rightarrow X(Y)\\\\)</span> is a Haar multiplier if <span>\\\\(D(h_I\\\\otimes h_J) = d_{I,J} h_I\\\\otimes h_J\\\\)</span>, where <span>\\\\(d_{I,J}\\\\in \\\\mathbb {R}\\\\)</span>, and ask which more elementary operators factor through <i>D</i>. A decisive role is played by the <i>Capon projection</i> <span>\\\\(\\\\mathcal {C}:\\\\mathcal {V}(\\\\delta ^2)\\\\rightarrow \\\\mathcal {V}(\\\\delta ^2)\\\\)</span> given by <span>\\\\(\\\\mathcal {C} h_I\\\\otimes h_J = h_I\\\\otimes h_J\\\\)</span> if <span>\\\\(|I|\\\\le |J|\\\\)</span>, and <span>\\\\(\\\\mathcal {C} h_I\\\\otimes h_J = 0\\\\)</span> if <span>\\\\(|I| &gt; |J|\\\\)</span>, as our main result highlights: Given any bounded Haar multiplier <span>\\\\(D:X(Y)\\\\rightarrow X(Y)\\\\)</span>, there exist <span>\\\\(\\\\lambda ,\\\\mu \\\\in \\\\mathbb {R}\\\\)</span> such that </p><span>$$\\\\begin{aligned} \\\\lambda \\\\mathcal {C} + \\\\mu ({{\\\\,\\\\textrm{Id}\\\\,}}-\\\\mathcal {C})\\\\text { approximately 1-projectionally factors through }D, \\\\end{aligned}$$</span><p>i.e., for all <span>\\\\(\\\\eta &gt; 0\\\\)</span>, there exist bounded operators <i>A</i>, <i>B</i> so that <i>AB</i> is the identity operator <span>\\\\({{\\\\,\\\\textrm{Id}\\\\,}}\\\\)</span>, <span>\\\\(\\\\Vert A\\\\Vert \\\\cdot \\\\Vert B\\\\Vert = 1\\\\)</span> and <span>\\\\(\\\\Vert \\\\lambda \\\\mathcal {C} + \\\\mu ({{\\\\,\\\\textrm{Id}\\\\,}}-\\\\mathcal {C}) - ADB\\\\Vert &lt; \\\\eta \\\\)</span>. Additionally, if <span>\\\\(\\\\mathcal {C}\\\\)</span> is unbounded on <i>X</i>(<i>Y</i>), then <span>\\\\(\\\\lambda = \\\\mu \\\\)</span> and then <span>\\\\({{\\\\,\\\\textrm{Id}\\\\,}}\\\\)</span> either factors through <i>D</i> or <span>\\\\({{\\\\,\\\\textrm{Id}\\\\,}}-D\\\\)</span>.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02887-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02887-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让((h_I))表示[0, 1]上的标准哈尔系统,由(I\in \mathcal {D}\)索引,即二元区间的集合,而(h_I\otimes h_J\)表示张量积(((s,t)映射到 h_I(s) h_J(t)),(I,J\in \mathcal {D}\)。我们考虑一类双参数函数空间,它们是 \(\mathcal {V}(\delta ^2)\)的线性跨度 \(h_I\otimes h_J\), \(I,J\in\mathcal {D}\) 的补全。这一类包含所有形式为X(Y)的空间,其中X和Y要么是Lebesgue空间\(L^p[0,1]\),要么是Hardy空间\(H^p[0,1]\), \(1\le p <\infty \)。如果 \(D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J\), 其中 \(d_{I,J}\in \mathbb {R}/),我们就说\(D:X(Y)\rightarrow X(Y)\)是一个哈氏乘法器,并询问哪些更基本的算子通过 D 进行因子运算。卡彭投影(Capon projection)起着决定性的作用:\如果\(|I|\le |J|\),那么由\(\mathcal {C} h_I\otimes h_J = h_I\otimes h_J\) 给出;如果\(|I| >;|J|\),正如我们的主要结果所强调的那样:给定任何有界哈氏乘法器(D:X(Y)\rightarrow X(Y)\),存在(\lambda ,\mu\in\mathbb{R}\),使得$$\begin{aligned}。\lambda \mathcal {C}+ ({{\textrm{Id}\}}-\mathcal {C})text { approximately 1-projectionally factors through }D, \end{aligned}$$也就是说、for all \(\eta > 0\), there exist bounded operators A, B so that AB is the identity operator \({{\,\textrm{Id}\,}}),\(\Vert A\Vert \cdot \Vert B\Vert = 1\) and\(\Vert \lambda \mathcal {C})+ ({{\textrm{Id}\,}}-\mathcal {C})- ADB\Vert < (eta \)。此外,如果 \(\mathcal {C}\) 在 X(Y) 上是无界的,那么 \(\lambda = \mu \),然后 \({{\textrm{Id}\,}}\) 要么通过 D 因子,要么通过 \({{\textrm{Id}\,}}-D\) 因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multipliers on bi-parameter Haar system Hardy spaces

Multipliers on bi-parameter Haar system Hardy spaces

Let \((h_I)\) denote the standard Haar system on [0, 1], indexed by \(I\in \mathcal {D}\), the set of dyadic intervals and \(h_I\otimes h_J\) denote the tensor product \((s,t)\mapsto h_I(s) h_J(t)\), \(I,J\in \mathcal {D}\). We consider a class of two-parameter function spaces which are completions of the linear span \(\mathcal {V}(\delta ^2)\) of \(h_I\otimes h_J\), \(I,J\in \mathcal {D}\). This class contains all the spaces of the form X(Y), where X and Y are either the Lebesgue spaces \(L^p[0,1]\) or the Hardy spaces \(H^p[0,1]\), \(1\le p < \infty \). We say that \(D:X(Y)\rightarrow X(Y)\) is a Haar multiplier if \(D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J\), where \(d_{I,J}\in \mathbb {R}\), and ask which more elementary operators factor through D. A decisive role is played by the Capon projection \(\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)\) given by \(\mathcal {C} h_I\otimes h_J = h_I\otimes h_J\) if \(|I|\le |J|\), and \(\mathcal {C} h_I\otimes h_J = 0\) if \(|I| > |J|\), as our main result highlights: Given any bounded Haar multiplier \(D:X(Y)\rightarrow X(Y)\), there exist \(\lambda ,\mu \in \mathbb {R}\) such that

$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$

i.e., for all \(\eta > 0\), there exist bounded operators AB so that AB is the identity operator \({{\,\textrm{Id}\,}}\), \(\Vert A\Vert \cdot \Vert B\Vert = 1\) and \(\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta \). Additionally, if \(\mathcal {C}\) is unbounded on X(Y), then \(\lambda = \mu \) and then \({{\,\textrm{Id}\,}}\) either factors through D or \({{\,\textrm{Id}\,}}-D\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信