{"title":"科斯祖尔对偶性和波恩卡莱-伯克霍夫-维特定理","authors":"Ezra Getzler","doi":"arxiv-2405.14798","DOIUrl":null,"url":null,"abstract":"Using a homotopy introduced by de Wilde and Lecomte and homological\nperturbation theory for $A_\\infty$-algebras, we give an explicit proof that the\nuniversal enveloping algebra $UL$ of a differential graded Lie algebra $L$ is\nKoszul, via an explicit contracting homotopy from the cobar construction\n$\\Omega CL$ of the Chevalley-Eilenberg chain coalgebra $CL$ of $L$ to $UL$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Koszul duality and the Poincaré-Birkhoff-Witt theorem\",\"authors\":\"Ezra Getzler\",\"doi\":\"arxiv-2405.14798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a homotopy introduced by de Wilde and Lecomte and homological\\nperturbation theory for $A_\\\\infty$-algebras, we give an explicit proof that the\\nuniversal enveloping algebra $UL$ of a differential graded Lie algebra $L$ is\\nKoszul, via an explicit contracting homotopy from the cobar construction\\n$\\\\Omega CL$ of the Chevalley-Eilenberg chain coalgebra $CL$ of $L$ to $UL$.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.14798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Koszul duality and the Poincaré-Birkhoff-Witt theorem
Using a homotopy introduced by de Wilde and Lecomte and homological
perturbation theory for $A_\infty$-algebras, we give an explicit proof that the
universal enveloping algebra $UL$ of a differential graded Lie algebra $L$ is
Koszul, via an explicit contracting homotopy from the cobar construction
$\Omega CL$ of the Chevalley-Eilenberg chain coalgebra $CL$ of $L$ to $UL$.