关于低维度实周期类图的几点计算

Jens Hornbostel
{"title":"关于低维度实周期类图的几点计算","authors":"Jens Hornbostel","doi":"arxiv-2405.14348","DOIUrl":null,"url":null,"abstract":"We investigate the surjectivity of the real cycle class map from\n$I$-cohomology to classical intergral cohomology for some real smooth\nvarieties, in particular surfaces. This might be considered as one of several\npossible incarnations of real integral Hodge theory.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A few computations about the real cycle class map in low dimensions\",\"authors\":\"Jens Hornbostel\",\"doi\":\"arxiv-2405.14348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the surjectivity of the real cycle class map from\\n$I$-cohomology to classical intergral cohomology for some real smooth\\nvarieties, in particular surfaces. This might be considered as one of several\\npossible incarnations of real integral Hodge theory.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.14348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一些实光滑变量(尤其是曲面)的实循环类映射从 I$-同调到经典积分同调的可射性。这可以看作是实积分霍奇理论的几种可能的化身之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A few computations about the real cycle class map in low dimensions
We investigate the surjectivity of the real cycle class map from $I$-cohomology to classical intergral cohomology for some real smooth varieties, in particular surfaces. This might be considered as one of several possible incarnations of real integral Hodge theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信