{"title":"用于投资组合优化的分布稳健型奖励风险新模型","authors":"Yijia Zhou, Lijun Xu","doi":"10.1515/math-2024-0010","DOIUrl":null,"url":null,"abstract":"A new distributionally robust ratio optimization model is proposed under the known first and second moments of the uncertain distributions. In this article, both standard deviation (SD) and conditional value-at-risk (CVaR) are used to measure the risk, avoiding both fat-tail and volatility. The new model can be reduced to a simple distributionally robust model under assumptions on the measurements of reward, CVaR and SD. Furthermore, it can be rewritten as a tractable semi-definite programming problem by the duality theorem under partially known information of the uncertain parameters. Finally, the model is tested on portfolio problems and verified from numerical results that it can give a reasonable decision under only the first and second moments.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new distributionally robust reward-risk model for portfolio optimization\",\"authors\":\"Yijia Zhou, Lijun Xu\",\"doi\":\"10.1515/math-2024-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new distributionally robust ratio optimization model is proposed under the known first and second moments of the uncertain distributions. In this article, both standard deviation (SD) and conditional value-at-risk (CVaR) are used to measure the risk, avoiding both fat-tail and volatility. The new model can be reduced to a simple distributionally robust model under assumptions on the measurements of reward, CVaR and SD. Furthermore, it can be rewritten as a tractable semi-definite programming problem by the duality theorem under partially known information of the uncertain parameters. Finally, the model is tested on portfolio problems and verified from numerical results that it can give a reasonable decision under only the first and second moments.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0010\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A new distributionally robust reward-risk model for portfolio optimization
A new distributionally robust ratio optimization model is proposed under the known first and second moments of the uncertain distributions. In this article, both standard deviation (SD) and conditional value-at-risk (CVaR) are used to measure the risk, avoiding both fat-tail and volatility. The new model can be reduced to a simple distributionally robust model under assumptions on the measurements of reward, CVaR and SD. Furthermore, it can be rewritten as a tractable semi-definite programming problem by the duality theorem under partially known information of the uncertain parameters. Finally, the model is tested on portfolio problems and verified from numerical results that it can give a reasonable decision under only the first and second moments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.