非理性程度:情绪和隐含波动率表面

Jiahao Weng, Yan Xie
{"title":"非理性程度:情绪和隐含波动率表面","authors":"Jiahao Weng, Yan Xie","doi":"arxiv-2405.11730","DOIUrl":null,"url":null,"abstract":"In this study, we constructed daily high-frequency sentiment data and used\nthe VAR method to attempt to predict the next day's implied volatility surface.\nWe utilized 630,000 text data entries from the East Money Stock Forum from 2014\nto 2023 and employed deep learning methods such as BERT and LSTM to build daily\nmarket sentiment indicators. By applying FFT and EMD methods for sentiment\ndecomposition, we found that high-frequency sentiment had a stronger\ncorrelation with at-the-money (ATM) options' implied volatility, while\nlow-frequency sentiment was more strongly correlated with deep out-of-the-money\n(DOTM) options' implied volatility. Further analysis revealed that the shape of\nthe implied volatility surface contains richer market sentiment information\nbeyond just market panic. We demonstrated that incorporating this sentiment\ninformation can improve the accuracy of implied volatility surface predictions.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree of Irrationality: Sentiment and Implied Volatility Surface\",\"authors\":\"Jiahao Weng, Yan Xie\",\"doi\":\"arxiv-2405.11730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we constructed daily high-frequency sentiment data and used\\nthe VAR method to attempt to predict the next day's implied volatility surface.\\nWe utilized 630,000 text data entries from the East Money Stock Forum from 2014\\nto 2023 and employed deep learning methods such as BERT and LSTM to build daily\\nmarket sentiment indicators. By applying FFT and EMD methods for sentiment\\ndecomposition, we found that high-frequency sentiment had a stronger\\ncorrelation with at-the-money (ATM) options' implied volatility, while\\nlow-frequency sentiment was more strongly correlated with deep out-of-the-money\\n(DOTM) options' implied volatility. Further analysis revealed that the shape of\\nthe implied volatility surface contains richer market sentiment information\\nbeyond just market panic. We demonstrated that incorporating this sentiment\\ninformation can improve the accuracy of implied volatility surface predictions.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.11730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.11730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们构建了每日高频情绪数据,并使用 VAR 方法尝试预测次日的隐含波动率面。我们利用了东财股票论坛从 2014 年到 2023 年的 63 万条文本数据,并采用 BERT 和 LSTM 等深度学习方法构建了每日市场情绪指标。通过应用FFT和EMD方法进行情绪分解,我们发现高频情绪与价内期权(ATM)的隐含波动率具有较强的相关性,而低频情绪与价外期权(DOTM)的隐含波动率具有更强的相关性。进一步的分析表明,隐含波动率表面的形状包含了更丰富的市场情绪信息,而不仅仅是市场恐慌情绪。我们证明,纳入这些情绪信息可以提高隐含波动率曲面预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degree of Irrationality: Sentiment and Implied Volatility Surface
In this study, we constructed daily high-frequency sentiment data and used the VAR method to attempt to predict the next day's implied volatility surface. We utilized 630,000 text data entries from the East Money Stock Forum from 2014 to 2023 and employed deep learning methods such as BERT and LSTM to build daily market sentiment indicators. By applying FFT and EMD methods for sentiment decomposition, we found that high-frequency sentiment had a stronger correlation with at-the-money (ATM) options' implied volatility, while low-frequency sentiment was more strongly correlated with deep out-of-the-money (DOTM) options' implied volatility. Further analysis revealed that the shape of the implied volatility surface contains richer market sentiment information beyond just market panic. We demonstrated that incorporating this sentiment information can improve the accuracy of implied volatility surface predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信