有限元与开关检测,用于非平滑系统的直接优化控制

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Armin Nurkanović, Mario Sperl, Sebastian Albrecht, Moritz Diehl
{"title":"有限元与开关检测,用于非平滑系统的直接优化控制","authors":"Armin Nurkanović, Mario Sperl, Sebastian Albrecht, Moritz Diehl","doi":"10.1007/s00211-024-01412-z","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces Finite Elements with Switch Detection (FESD), a numerical discretization method for nonsmooth differential equations. We consider the Filippov convexification of these systems and a transformation into dynamic complementarity systems introduced by Stewart (Numer Math 58(1):299–328, 1990). FESD is based on solving nonlinear complementarity problems and can automatically detect nonsmooth events in time. If standard time-stepping Runge–Kutta (RK) methods are naively applied to a nonsmooth ODE, the accuracy is at best of order one. In FESD, we let the integrator step size be a degree of freedom. Additional complementarity conditions, which we call <i>cross complementarities</i>, enable <i>exact</i> switch detection, hence FESD can recover the high order accuracy that the RK methods enjoy for smooth ODE. Additional conditions called <i>step equilibration</i> allow the step size to change only when switches occur and thus avoid spurious degrees of freedom. Convergence results for the FESD method are derived, local uniqueness of the solution and convergence of numerical sensitivities are proven. The efficacy of FESD is demonstrated in several simulation and optimal control examples. In an optimal control problem benchmark with FESD, we achieve up to five orders of magnitude more accurate solutions than a standard time-stepping approach for the same computational time.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Elements with Switch Detection for direct optimal control of nonsmooth systems\",\"authors\":\"Armin Nurkanović, Mario Sperl, Sebastian Albrecht, Moritz Diehl\",\"doi\":\"10.1007/s00211-024-01412-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces Finite Elements with Switch Detection (FESD), a numerical discretization method for nonsmooth differential equations. We consider the Filippov convexification of these systems and a transformation into dynamic complementarity systems introduced by Stewart (Numer Math 58(1):299–328, 1990). FESD is based on solving nonlinear complementarity problems and can automatically detect nonsmooth events in time. If standard time-stepping Runge–Kutta (RK) methods are naively applied to a nonsmooth ODE, the accuracy is at best of order one. In FESD, we let the integrator step size be a degree of freedom. Additional complementarity conditions, which we call <i>cross complementarities</i>, enable <i>exact</i> switch detection, hence FESD can recover the high order accuracy that the RK methods enjoy for smooth ODE. Additional conditions called <i>step equilibration</i> allow the step size to change only when switches occur and thus avoid spurious degrees of freedom. Convergence results for the FESD method are derived, local uniqueness of the solution and convergence of numerical sensitivities are proven. The efficacy of FESD is demonstrated in several simulation and optimal control examples. In an optimal control problem benchmark with FESD, we achieve up to five orders of magnitude more accurate solutions than a standard time-stepping approach for the same computational time.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-024-01412-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01412-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了非光滑微分方程的数值离散化方法--开关检测有限元(FESD)。我们考虑了这些系统的 Filippov 凸化和 Stewart 引入的动态互补系统转换(Numer Math 58(1):299-328, 1990)。FESD 以求解非线性互补性问题为基础,可以自动检测时间上的非光滑事件。如果将标准的时间步进 Runge-Kutta (RK) 方法天真地应用于非光滑 ODE,其精度最多只有一阶。在 FESD 中,我们将积分器步长作为一个自由度。附加的互补条件(我们称之为交叉互补)可以实现精确的开关检测,因此 FESD 可以恢复 RK 方法在光滑 ODE 中的高阶精度。被称为步长均衡的附加条件允许步长仅在开关发生时改变,从而避免了虚假自由度。推导出了 FESD 方法的收敛结果,证明了解的局部唯一性和数值敏感性的收敛性。FESD 的功效在几个模拟和最优控制实例中得到了证明。在一个最优控制问题基准中,使用 FESD,在相同的计算时间内,我们获得了比标准时间步进方法高五个数量级的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Finite Elements with Switch Detection for direct optimal control of nonsmooth systems

Finite Elements with Switch Detection for direct optimal control of nonsmooth systems

This paper introduces Finite Elements with Switch Detection (FESD), a numerical discretization method for nonsmooth differential equations. We consider the Filippov convexification of these systems and a transformation into dynamic complementarity systems introduced by Stewart (Numer Math 58(1):299–328, 1990). FESD is based on solving nonlinear complementarity problems and can automatically detect nonsmooth events in time. If standard time-stepping Runge–Kutta (RK) methods are naively applied to a nonsmooth ODE, the accuracy is at best of order one. In FESD, we let the integrator step size be a degree of freedom. Additional complementarity conditions, which we call cross complementarities, enable exact switch detection, hence FESD can recover the high order accuracy that the RK methods enjoy for smooth ODE. Additional conditions called step equilibration allow the step size to change only when switches occur and thus avoid spurious degrees of freedom. Convergence results for the FESD method are derived, local uniqueness of the solution and convergence of numerical sensitivities are proven. The efficacy of FESD is demonstrated in several simulation and optimal control examples. In an optimal control problem benchmark with FESD, we achieve up to five orders of magnitude more accurate solutions than a standard time-stepping approach for the same computational time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信