{"title":"三维规定标量曲率超曲面的内部曲率估算","authors":"Guohuan Qiu","doi":"10.1353/ajm.2024.a928319","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>We prove a priori interior curvature estimates for hypersurfaces of prescribing scalar curvature equations in $\\mathbb{R}^{3}$. The method is motivated by the integral method of Warren and Yuan. The new observation here is that we construct a ``Lagrangian'' graph which is a submanifold of bounded mean curvature if the graph function of a hypersurface satisfies a scalar curvature equation.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"16 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interior curvature estimates for hypersurfaces of prescribing scalar curvature in dimension three\",\"authors\":\"Guohuan Qiu\",\"doi\":\"10.1353/ajm.2024.a928319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>abstract:</p><p>We prove a priori interior curvature estimates for hypersurfaces of prescribing scalar curvature equations in $\\\\mathbb{R}^{3}$. The method is motivated by the integral method of Warren and Yuan. The new observation here is that we construct a ``Lagrangian'' graph which is a submanifold of bounded mean curvature if the graph function of a hypersurface satisfies a scalar curvature equation.</p></p>\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2024.a928319\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a928319","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Interior curvature estimates for hypersurfaces of prescribing scalar curvature in dimension three
abstract:
We prove a priori interior curvature estimates for hypersurfaces of prescribing scalar curvature equations in $\mathbb{R}^{3}$. The method is motivated by the integral method of Warren and Yuan. The new observation here is that we construct a ``Lagrangian'' graph which is a submanifold of bounded mean curvature if the graph function of a hypersurface satisfies a scalar curvature equation.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.