{"title":"从希尔伯特多项式中找回 $λ$","authors":"Joseph Donato, Monica Lewis","doi":"arxiv-2405.12886","DOIUrl":null,"url":null,"abstract":"In the study of Hilbert schemes, the integer partition $\\lambda$ helps\nresearchers identify some geometric and combinatorial properties of the scheme\nin question. To aid researchers in extracting such information from a Hilbert\npolynomial, we describe an efficient algorithm which can identify if\n$p(x)\\in\\mathbb{Q}[x]$ is a Hilbert polynomial and if so, recover the integer\npartition $\\lambda$ associated with it.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Recovery of $λ$ from a Hilbert Polynomial\",\"authors\":\"Joseph Donato, Monica Lewis\",\"doi\":\"arxiv-2405.12886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the study of Hilbert schemes, the integer partition $\\\\lambda$ helps\\nresearchers identify some geometric and combinatorial properties of the scheme\\nin question. To aid researchers in extracting such information from a Hilbert\\npolynomial, we describe an efficient algorithm which can identify if\\n$p(x)\\\\in\\\\mathbb{Q}[x]$ is a Hilbert polynomial and if so, recover the integer\\npartition $\\\\lambda$ associated with it.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.12886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.12886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the study of Hilbert schemes, the integer partition $\lambda$ helps
researchers identify some geometric and combinatorial properties of the scheme
in question. To aid researchers in extracting such information from a Hilbert
polynomial, we describe an efficient algorithm which can identify if
$p(x)\in\mathbb{Q}[x]$ is a Hilbert polynomial and if so, recover the integer
partition $\lambda$ associated with it.