从希尔伯特多项式中找回 $λ$

Joseph Donato, Monica Lewis
{"title":"从希尔伯特多项式中找回 $λ$","authors":"Joseph Donato, Monica Lewis","doi":"arxiv-2405.12886","DOIUrl":null,"url":null,"abstract":"In the study of Hilbert schemes, the integer partition $\\lambda$ helps\nresearchers identify some geometric and combinatorial properties of the scheme\nin question. To aid researchers in extracting such information from a Hilbert\npolynomial, we describe an efficient algorithm which can identify if\n$p(x)\\in\\mathbb{Q}[x]$ is a Hilbert polynomial and if so, recover the integer\npartition $\\lambda$ associated with it.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Recovery of $λ$ from a Hilbert Polynomial\",\"authors\":\"Joseph Donato, Monica Lewis\",\"doi\":\"arxiv-2405.12886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the study of Hilbert schemes, the integer partition $\\\\lambda$ helps\\nresearchers identify some geometric and combinatorial properties of the scheme\\nin question. To aid researchers in extracting such information from a Hilbert\\npolynomial, we describe an efficient algorithm which can identify if\\n$p(x)\\\\in\\\\mathbb{Q}[x]$ is a Hilbert polynomial and if so, recover the integer\\npartition $\\\\lambda$ associated with it.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.12886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.12886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在对希尔伯特方案的研究中,整数分割 $\lambda$ 可以帮助研究人员识别相关方案的一些几何和组合性质。为了帮助研究人员从希尔伯特多项式中提取这些信息,我们描述了一种高效的算法,它可以识别$p(x)\in\mathbb{Q}[x]$是否是希尔伯特多项式,如果是,则恢复与之相关的整数分区$\lambda$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Recovery of $λ$ from a Hilbert Polynomial
In the study of Hilbert schemes, the integer partition $\lambda$ helps researchers identify some geometric and combinatorial properties of the scheme in question. To aid researchers in extracting such information from a Hilbert polynomial, we describe an efficient algorithm which can identify if $p(x)\in\mathbb{Q}[x]$ is a Hilbert polynomial and if so, recover the integer partition $\lambda$ associated with it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信