{"title":"薄单相问题中的稳定锥体","authors":"Xavier Fernández-Real, Xavier Ros-Oton","doi":"10.1353/ajm.2024.a928321","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one-phase free boundary problem.</p><p>The problem of classifying stable (or minimal) homogeneous solutions in dimensions $n\\geq3$ is completely open. In this context, axially symmetric solutions are expected to play the same role as Simons' cone in the classical theory of minimal surfaces, but even in this simpler case the problem is open.</p><p>The goal of this paper is twofold. On the one hand, our first main contribution is to find, for the first time, the stability condition for the thin one-phase problem. Quite surprisingly, this requires the use of ``large solutions'' for the fractional Laplacian, which blow up on the free boundary.</p><p>On the other hand, using our new stability condition, we show that any axially symmetric homogeneous stable solution in dimensions $n\\le 5$ is one-dimensional, \\emph{independently} of the parameter $s\\in (0,1)$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable cones in the thin one-phase problem\",\"authors\":\"Xavier Fernández-Real, Xavier Ros-Oton\",\"doi\":\"10.1353/ajm.2024.a928321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>abstract:</p><p>The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one-phase free boundary problem.</p><p>The problem of classifying stable (or minimal) homogeneous solutions in dimensions $n\\\\geq3$ is completely open. In this context, axially symmetric solutions are expected to play the same role as Simons' cone in the classical theory of minimal surfaces, but even in this simpler case the problem is open.</p><p>The goal of this paper is twofold. On the one hand, our first main contribution is to find, for the first time, the stability condition for the thin one-phase problem. Quite surprisingly, this requires the use of ``large solutions'' for the fractional Laplacian, which blow up on the free boundary.</p><p>On the other hand, using our new stability condition, we show that any axially symmetric homogeneous stable solution in dimensions $n\\\\le 5$ is one-dimensional, \\\\emph{independently} of the parameter $s\\\\in (0,1)$.</p></p>\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2024.a928321\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a928321","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one-phase free boundary problem.
The problem of classifying stable (or minimal) homogeneous solutions in dimensions $n\geq3$ is completely open. In this context, axially symmetric solutions are expected to play the same role as Simons' cone in the classical theory of minimal surfaces, but even in this simpler case the problem is open.
The goal of this paper is twofold. On the one hand, our first main contribution is to find, for the first time, the stability condition for the thin one-phase problem. Quite surprisingly, this requires the use of ``large solutions'' for the fractional Laplacian, which blow up on the free boundary.
On the other hand, using our new stability condition, we show that any axially symmetric homogeneous stable solution in dimensions $n\le 5$ is one-dimensional, \emph{independently} of the parameter $s\in (0,1)$.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.