{"title":"网格和换元器的特征刚性","authors":"Darren Creutz, Jesse Peterson","doi":"10.1353/ajm.2024.a928322","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>We prove an operator algebraic superrigidity statement for homomorphisms of irreducible lattices, and also their commensurators, from certain higher-rank groups into unitary groups of finite factors. This extends the authors' previous work regarding non-free measure-preserving actions, and also answers a question of Connes for such groups.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Character rigidity for lattices and commensurators\",\"authors\":\"Darren Creutz, Jesse Peterson\",\"doi\":\"10.1353/ajm.2024.a928322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>abstract:</p><p>We prove an operator algebraic superrigidity statement for homomorphisms of irreducible lattices, and also their commensurators, from certain higher-rank groups into unitary groups of finite factors. This extends the authors' previous work regarding non-free measure-preserving actions, and also answers a question of Connes for such groups.</p></p>\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2024.a928322\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a928322","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Character rigidity for lattices and commensurators
abstract:
We prove an operator algebraic superrigidity statement for homomorphisms of irreducible lattices, and also their commensurators, from certain higher-rank groups into unitary groups of finite factors. This extends the authors' previous work regarding non-free measure-preserving actions, and also answers a question of Connes for such groups.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.