{"title":"奇异接触变种","authors":"Robert Śmiech","doi":"10.1007/s00229-024-01561-3","DOIUrl":null,"url":null,"abstract":"<p>In this note we propose the generalization of the notion of a holomorphic contact structure on a manifold (smooth variety) to varieties with rational singularities and prove basic properties of such objects. Natural examples of <i>singular contact varieties</i> come from the theory of nilpotent orbits: every projectivization of the closure of a nilpotent orbit in a semisimple Lie algebra satisfies our definition after normalization. We show the correspondence between symplectic varieties with the structure of a <span>\\(\\mathbb {C}^*\\)</span>-bundle and the contact ones along with the existence of stratification <i>à la</i> Kaledin. In the projective case we demonstrate the equivalence between crepant and contact resolutions of singularities, show the uniruledness and give a full classification of projective contact varieties in dimension 3.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"143 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular contact varieties\",\"authors\":\"Robert Śmiech\",\"doi\":\"10.1007/s00229-024-01561-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note we propose the generalization of the notion of a holomorphic contact structure on a manifold (smooth variety) to varieties with rational singularities and prove basic properties of such objects. Natural examples of <i>singular contact varieties</i> come from the theory of nilpotent orbits: every projectivization of the closure of a nilpotent orbit in a semisimple Lie algebra satisfies our definition after normalization. We show the correspondence between symplectic varieties with the structure of a <span>\\\\(\\\\mathbb {C}^*\\\\)</span>-bundle and the contact ones along with the existence of stratification <i>à la</i> Kaledin. In the projective case we demonstrate the equivalence between crepant and contact resolutions of singularities, show the uniruledness and give a full classification of projective contact varieties in dimension 3.</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01561-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01561-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this note we propose the generalization of the notion of a holomorphic contact structure on a manifold (smooth variety) to varieties with rational singularities and prove basic properties of such objects. Natural examples of singular contact varieties come from the theory of nilpotent orbits: every projectivization of the closure of a nilpotent orbit in a semisimple Lie algebra satisfies our definition after normalization. We show the correspondence between symplectic varieties with the structure of a \(\mathbb {C}^*\)-bundle and the contact ones along with the existence of stratification à la Kaledin. In the projective case we demonstrate the equivalence between crepant and contact resolutions of singularities, show the uniruledness and give a full classification of projective contact varieties in dimension 3.
期刊介绍:
manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.