奇异接触变种

IF 0.5 4区 数学 Q3 MATHEMATICS
Robert Śmiech
{"title":"奇异接触变种","authors":"Robert Śmiech","doi":"10.1007/s00229-024-01561-3","DOIUrl":null,"url":null,"abstract":"<p>In this note we propose the generalization of the notion of a holomorphic contact structure on a manifold (smooth variety) to varieties with rational singularities and prove basic properties of such objects. Natural examples of <i>singular contact varieties</i> come from the theory of nilpotent orbits: every projectivization of the closure of a nilpotent orbit in a semisimple Lie algebra satisfies our definition after normalization. We show the correspondence between symplectic varieties with the structure of a <span>\\(\\mathbb {C}^*\\)</span>-bundle and the contact ones along with the existence of stratification <i>à la</i> Kaledin. In the projective case we demonstrate the equivalence between crepant and contact resolutions of singularities, show the uniruledness and give a full classification of projective contact varieties in dimension 3.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"143 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular contact varieties\",\"authors\":\"Robert Śmiech\",\"doi\":\"10.1007/s00229-024-01561-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note we propose the generalization of the notion of a holomorphic contact structure on a manifold (smooth variety) to varieties with rational singularities and prove basic properties of such objects. Natural examples of <i>singular contact varieties</i> come from the theory of nilpotent orbits: every projectivization of the closure of a nilpotent orbit in a semisimple Lie algebra satisfies our definition after normalization. We show the correspondence between symplectic varieties with the structure of a <span>\\\\(\\\\mathbb {C}^*\\\\)</span>-bundle and the contact ones along with the existence of stratification <i>à la</i> Kaledin. In the projective case we demonstrate the equivalence between crepant and contact resolutions of singularities, show the uniruledness and give a full classification of projective contact varieties in dimension 3.</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01561-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01561-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们提出将流形(光滑品种)上的全态接触结构概念推广到具有有理奇点的品种上,并证明了这类对象的基本性质。奇点接触变体的自然例子来自零势轨道理论:半简单李代数中零势轨道闭合的每一个投影化在归一化之后都满足我们的定义。我们展示了具有 \(\mathbb {C}^*\)-bundle 结构的交映变体与接触变体之间的对应关系,以及卡莱丁(Kaledin)分层的存在。在投影情况下,我们证明了奇点的crepant决议和接触决议之间的等价性,证明了uniruledness,并给出了维 3 中投影接触 varieties 的完整分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Singular contact varieties

Singular contact varieties

In this note we propose the generalization of the notion of a holomorphic contact structure on a manifold (smooth variety) to varieties with rational singularities and prove basic properties of such objects. Natural examples of singular contact varieties come from the theory of nilpotent orbits: every projectivization of the closure of a nilpotent orbit in a semisimple Lie algebra satisfies our definition after normalization. We show the correspondence between symplectic varieties with the structure of a \(\mathbb {C}^*\)-bundle and the contact ones along with the existence of stratification à la Kaledin. In the projective case we demonstrate the equivalence between crepant and contact resolutions of singularities, show the uniruledness and give a full classification of projective contact varieties in dimension 3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信