{"title":"一些非自相加算子的散射理论","authors":"Nicolas Frantz","doi":"10.1142/s0129055x24500235","DOIUrl":null,"url":null,"abstract":"<p>We consider a non-self-adjoint <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span> acting on a complex Hilbert space. We suppose that <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span> is of the form <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">+</mo><mi>C</mi><mi>W</mi><mi>C</mi></math></span><span></span> where <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> is a bounded, positive definite and relatively compact with respect to <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>W</mi></math></span><span></span> is bounded. We suppose that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><msup><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">−</mo><mi>z</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msup><mi>C</mi></math></span><span></span> is uniformly bounded in <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>z</mi><mo>∈</mo><mi>ℂ</mi><mo stretchy=\"false\">∖</mo><mi>ℝ</mi></math></span><span></span>. We define the regularized wave operators associated to <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span> and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> by <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>W</mi></mrow><mrow><mo stretchy=\"false\">±</mo></mrow></msub><mo stretchy=\"false\">(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">s-lim</mtext></mstyle></mrow><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mo stretchy=\"false\">±</mo><mi>i</mi><mi>t</mi><mi>H</mi></mrow></msup><msub><mrow><mi>r</mi></mrow><mrow><mo stretchy=\"false\">∓</mo></mrow></msub><mo stretchy=\"false\">(</mo><mi>H</mi><mo stretchy=\"false\">)</mo><msub><mrow><mi mathvariant=\"normal\">Π</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">p</mtext></mstyle></mrow></msub><msup><mrow><mo stretchy=\"false\">(</mo><msup><mrow><mi>H</mi></mrow><mrow><mo stretchy=\"false\">⋆</mo></mrow></msup><mo stretchy=\"false\">)</mo></mrow><mrow><mo>⊥</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo stretchy=\"false\">∓</mo><mi>i</mi><mi>t</mi><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span><span></span> where <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Π</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">p</mtext></mstyle></mrow></msub><mo stretchy=\"false\">(</mo><msup><mrow><mi>H</mi></mrow><mrow><mo stretchy=\"false\">⋆</mo></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> is the projection onto the direct sum of all the generalized eigenspaces associated to eigenvalues of <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mo stretchy=\"false\">⋆</mo></mrow></msup></math></span><span></span> and <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mo stretchy=\"false\">∓</mo></mrow></msub></math></span><span></span> is a rational function that regularizes the “incoming/outgoing spectral singularities” of <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span>. We prove the existence and study the properties of the regularized wave operators. In particular, we show that they are asymptotically complete if <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span> does not have any spectral singularity.</p>","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":"67 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering theory for some non-self-adjoint operators\",\"authors\":\"Nicolas Frantz\",\"doi\":\"10.1142/s0129055x24500235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a non-self-adjoint <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi></math></span><span></span> acting on a complex Hilbert space. We suppose that <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi></math></span><span></span> is of the form <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">+</mo><mi>C</mi><mi>W</mi><mi>C</mi></math></span><span></span> where <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi></math></span><span></span> is a bounded, positive definite and relatively compact with respect to <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, and <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>W</mi></math></span><span></span> is bounded. We suppose that <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><msup><mrow><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">−</mo><mi>z</mi><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></mrow></msup><mi>C</mi></math></span><span></span> is uniformly bounded in <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>z</mi><mo>∈</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">∖</mo><mi>ℝ</mi></math></span><span></span>. We define the regularized wave operators associated to <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi></math></span><span></span> and <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> by <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>W</mi></mrow><mrow><mo stretchy=\\\"false\\\">±</mo></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo>:</mo><mo>=</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">s-lim</mtext></mstyle></mrow><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mo stretchy=\\\"false\\\">±</mo><mi>i</mi><mi>t</mi><mi>H</mi></mrow></msup><msub><mrow><mi>r</mi></mrow><mrow><mo stretchy=\\\"false\\\">∓</mo></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>H</mi><mo stretchy=\\\"false\\\">)</mo><msub><mrow><mi mathvariant=\\\"normal\\\">Π</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">p</mtext></mstyle></mrow></msub><msup><mrow><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>H</mi></mrow><mrow><mo stretchy=\\\"false\\\">⋆</mo></mrow></msup><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mo>⊥</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo stretchy=\\\"false\\\">∓</mo><mi>i</mi><mi>t</mi><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span><span></span> where <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"normal\\\">Π</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">p</mtext></mstyle></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>H</mi></mrow><mrow><mo stretchy=\\\"false\\\">⋆</mo></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is the projection onto the direct sum of all the generalized eigenspaces associated to eigenvalues of <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>H</mi></mrow><mrow><mo stretchy=\\\"false\\\">⋆</mo></mrow></msup></math></span><span></span> and <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>r</mi></mrow><mrow><mo stretchy=\\\"false\\\">∓</mo></mrow></msub></math></span><span></span> is a rational function that regularizes the “incoming/outgoing spectral singularities” of <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi></math></span><span></span>. We prove the existence and study the properties of the regularized wave operators. In particular, we show that they are asymptotically complete if <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi></math></span><span></span> does not have any spectral singularity.</p>\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129055x24500235\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x24500235","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑一个作用于复数希尔伯特空间的非自相加 H。我们假设 H 是 H=H0+CWC 形式,其中 C 是有界、正定且相对于 H0 紧凑的,W 是有界的。我们假设 C(H0-z)-1C 在 z∈ℂ∖ℝ 中均匀有界。我们用 W±(H,H0)定义与 H 和 H0 相关的正则化波算子:=s-limt→∞e±itHr∓(H)Πp(H⋆)⊥e∓itH0,其中Πp(H⋆)是投影到与 H⋆的特征值相关的所有广义特征空间的直和上,r∓是一个有理函数,用于正则化 H 的 "入射/出射频谱奇异性"。我们证明了正则化波算子的存在并研究了其性质。特别是,我们证明了如果 H 没有任何谱奇异性,它们就是渐近完全的。
Scattering theory for some non-self-adjoint operators
We consider a non-self-adjoint acting on a complex Hilbert space. We suppose that is of the form where is a bounded, positive definite and relatively compact with respect to , and is bounded. We suppose that is uniformly bounded in . We define the regularized wave operators associated to and by where is the projection onto the direct sum of all the generalized eigenspaces associated to eigenvalues of and is a rational function that regularizes the “incoming/outgoing spectral singularities” of . We prove the existence and study the properties of the regularized wave operators. In particular, we show that they are asymptotically complete if does not have any spectral singularity.
期刊介绍:
Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.