可代数刚性解析变种通过一般基上的邻近循环的Étale同调

IF 0.5 4区 数学 Q3 MATHEMATICS
Hiroki Kato
{"title":"可代数刚性解析变种通过一般基上的邻近循环的Étale同调","authors":"Hiroki Kato","doi":"10.1007/s00229-024-01564-0","DOIUrl":null,"url":null,"abstract":"<p>We prove a finiteness theorem and a comparison theorem in the theory of étale cohomology of rigid analytic varieties. By a result of Huber, for a quasi-compact separated morphism of rigid analytic varieties with target being of dimension <span>\\(\\le 1\\)</span>, the compactly supported higher direct image preserves quasi-constructibility. Though the analogous statement for morphisms with higher dimensional target fails in general, we prove that, in the algebraizable case, it holds after replacing the target with a modification. We deduce it from a known finiteness result in the theory of nearby cycles over general bases and a new comparison result, which gives an identification of the compactly supported higher direct image sheaves, up to modification of the target, in terms of nearby cycles over general bases.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"41 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Étale cohomology of algebraizable rigid analytic varieties via nearby cycles over general bases\",\"authors\":\"Hiroki Kato\",\"doi\":\"10.1007/s00229-024-01564-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a finiteness theorem and a comparison theorem in the theory of étale cohomology of rigid analytic varieties. By a result of Huber, for a quasi-compact separated morphism of rigid analytic varieties with target being of dimension <span>\\\\(\\\\le 1\\\\)</span>, the compactly supported higher direct image preserves quasi-constructibility. Though the analogous statement for morphisms with higher dimensional target fails in general, we prove that, in the algebraizable case, it holds after replacing the target with a modification. We deduce it from a known finiteness result in the theory of nearby cycles over general bases and a new comparison result, which gives an identification of the compactly supported higher direct image sheaves, up to modification of the target, in terms of nearby cycles over general bases.</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01564-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01564-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了刚性解析变的埃塔尔同调理论中的一个有限性定理和一个比较定理。根据胡贝尔(Huber)的一个结果,对于目标维数为\(\le 1\) 的刚性解析变体的准紧凑分离态,紧凑支撑的高直映像保留了准构造性。尽管对具有高维目标的态的类比声明在一般情况下是不成立的,但我们证明,在可代数的情况下,在用一个修正替换目标之后,它是成立的。我们从一般基上的邻近循环理论中的一个已知有限性结果和一个新的比较结果中推导出这一结论,该比较结果给出了紧凑支持的高直映像剪切的识别,直到目标的修正,以一般基上的邻近循环为条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Étale cohomology of algebraizable rigid analytic varieties via nearby cycles over general bases

We prove a finiteness theorem and a comparison theorem in the theory of étale cohomology of rigid analytic varieties. By a result of Huber, for a quasi-compact separated morphism of rigid analytic varieties with target being of dimension \(\le 1\), the compactly supported higher direct image preserves quasi-constructibility. Though the analogous statement for morphisms with higher dimensional target fails in general, we prove that, in the algebraizable case, it holds after replacing the target with a modification. We deduce it from a known finiteness result in the theory of nearby cycles over general bases and a new comparison result, which gives an identification of the compactly supported higher direct image sheaves, up to modification of the target, in terms of nearby cycles over general bases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信