变异磨损石

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Graziano Crasta, Ilaria Fragalà
{"title":"变异磨损石","authors":"Graziano Crasta,&nbsp;Ilaria Fragalà","doi":"10.1007/s00205-024-01994-w","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce an evolution model à la Firey for a convex stone which tumbles on a beach and undertakes an erosion process depending on some variational energy, such as torsional rigidity, a principal Dirichlet Laplacian eigenvalue, or Newtonian capacity. Relying on the assumption of the existence of a solution to the corresponding parabolic flow, we prove that the stone tends to become asymptotically spherical. Indeed, we identify an ultimate shape of these flows with a smooth convex body whose ground state satisfies an additional boundary condition, and we prove symmetry results for the corresponding overdetermined elliptic problems. Moreover, we extend the analysis to arbitrary convex bodies: we introduce new notions of cone variational measures and we prove that, if such a measure is absolutely continuous with constant density, the underlying body is a ball.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01994-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Variational Worn Stones\",\"authors\":\"Graziano Crasta,&nbsp;Ilaria Fragalà\",\"doi\":\"10.1007/s00205-024-01994-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce an evolution model à la Firey for a convex stone which tumbles on a beach and undertakes an erosion process depending on some variational energy, such as torsional rigidity, a principal Dirichlet Laplacian eigenvalue, or Newtonian capacity. Relying on the assumption of the existence of a solution to the corresponding parabolic flow, we prove that the stone tends to become asymptotically spherical. Indeed, we identify an ultimate shape of these flows with a smooth convex body whose ground state satisfies an additional boundary condition, and we prove symmetry results for the corresponding overdetermined elliptic problems. Moreover, we extend the analysis to arbitrary convex bodies: we introduce new notions of cone variational measures and we prove that, if such a measure is absolutely continuous with constant density, the underlying body is a ball.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-01994-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01994-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01994-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个类似于 Firey 的演化模型,即一块在沙滩上翻滚的凸形石头,其侵蚀过程取决于一些变异能量,如扭转刚度、主 Dirichlet 拉普拉奇特征值或牛顿能力。基于存在相应抛物线流的解的假设,我们证明石头趋向于渐近球形。事实上,我们将这些流的最终形状与一个光滑凸体相提并论,该凸体的基态满足一个附加边界条件,我们还证明了相应过定椭圆问题的对称性结果。此外,我们还将分析扩展到了任意凸体:我们引入了新的圆锥变分量概念,并证明了如果这样的量是绝对连续且密度恒定的,那么底面体就是一个球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Worn Stones

We introduce an evolution model à la Firey for a convex stone which tumbles on a beach and undertakes an erosion process depending on some variational energy, such as torsional rigidity, a principal Dirichlet Laplacian eigenvalue, or Newtonian capacity. Relying on the assumption of the existence of a solution to the corresponding parabolic flow, we prove that the stone tends to become asymptotically spherical. Indeed, we identify an ultimate shape of these flows with a smooth convex body whose ground state satisfies an additional boundary condition, and we prove symmetry results for the corresponding overdetermined elliptic problems. Moreover, we extend the analysis to arbitrary convex bodies: we introduce new notions of cone variational measures and we prove that, if such a measure is absolutely continuous with constant density, the underlying body is a ball.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信