{"title":"关于奇数分区号的说明","authors":"Michael Griffin, Ken Ono","doi":"10.1007/s00013-024-01999-7","DOIUrl":null,"url":null,"abstract":"<div><p>Ramanujan’s partition congruences modulo <span>\\(\\ell \\in \\{5, 7, 11\\}\\)</span> assert that </p><div><div><span>$$\\begin{aligned} p(\\ell n+\\delta _{\\ell })\\equiv 0\\pmod {\\ell }, \\end{aligned}$$</span></div></div><p>where <span>\\(0<\\delta _{\\ell }<\\ell \\)</span> satisfies <span>\\(24\\delta _{\\ell }\\equiv 1\\pmod {\\ell }.\\)</span> By proving Subbarao’s conjecture, Radu showed that there are no such congruences when it comes to parity. There are infinitely many odd (resp. even) partition numbers in every arithmetic progression. For primes <span>\\(\\ell \\ge 5,\\)</span> we give a new proof of the conclusion that there are infinitely many <i>m</i> for which <span>\\(p(\\ell m+\\delta _{\\ell })\\)</span> is odd. This proof uses a generalization, due to the second author and Ramsey, of a result of Mazur in his classic paper on the Eisenstein ideal. We also refine a classical criterion of Sturm for modular form congruences, which allows us to show that the smallest such <i>m</i> satisfies <span>\\(m<(\\ell ^2-1)/24,\\)</span> representing a significant improvement to the previous bound.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 1","pages":"39 - 48"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01999-7.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on odd partition numbers\",\"authors\":\"Michael Griffin, Ken Ono\",\"doi\":\"10.1007/s00013-024-01999-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ramanujan’s partition congruences modulo <span>\\\\(\\\\ell \\\\in \\\\{5, 7, 11\\\\}\\\\)</span> assert that </p><div><div><span>$$\\\\begin{aligned} p(\\\\ell n+\\\\delta _{\\\\ell })\\\\equiv 0\\\\pmod {\\\\ell }, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(0<\\\\delta _{\\\\ell }<\\\\ell \\\\)</span> satisfies <span>\\\\(24\\\\delta _{\\\\ell }\\\\equiv 1\\\\pmod {\\\\ell }.\\\\)</span> By proving Subbarao’s conjecture, Radu showed that there are no such congruences when it comes to parity. There are infinitely many odd (resp. even) partition numbers in every arithmetic progression. For primes <span>\\\\(\\\\ell \\\\ge 5,\\\\)</span> we give a new proof of the conclusion that there are infinitely many <i>m</i> for which <span>\\\\(p(\\\\ell m+\\\\delta _{\\\\ell })\\\\)</span> is odd. This proof uses a generalization, due to the second author and Ramsey, of a result of Mazur in his classic paper on the Eisenstein ideal. We also refine a classical criterion of Sturm for modular form congruences, which allows us to show that the smallest such <i>m</i> satisfies <span>\\\\(m<(\\\\ell ^2-1)/24,\\\\)</span> representing a significant improvement to the previous bound.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 1\",\"pages\":\"39 - 48\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-01999-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01999-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01999-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
where \(0<\delta _{\ell }<\ell \) satisfies \(24\delta _{\ell }\equiv 1\pmod {\ell }.\) By proving Subbarao’s conjecture, Radu showed that there are no such congruences when it comes to parity. There are infinitely many odd (resp. even) partition numbers in every arithmetic progression. For primes \(\ell \ge 5,\) we give a new proof of the conclusion that there are infinitely many m for which \(p(\ell m+\delta _{\ell })\) is odd. This proof uses a generalization, due to the second author and Ramsey, of a result of Mazur in his classic paper on the Eisenstein ideal. We also refine a classical criterion of Sturm for modular form congruences, which allows us to show that the smallest such m satisfies \(m<(\ell ^2-1)/24,\) representing a significant improvement to the previous bound.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.