Haojie Zhuang, Wei Zhang, Weitong Chen, Jian Yang, Quan Z. Sheng
{"title":"在可解释的推荐中通过对比学习提高忠实性和事实性","authors":"Haojie Zhuang, Wei Zhang, Weitong Chen, Jian Yang, Quan Z. Sheng","doi":"10.1145/3653984","DOIUrl":null,"url":null,"abstract":"<p>Recommender systems have become increasingly important in navigating the vast amount of information and options available in various domains. By tailoring and personalizing recommendations to user preferences and interests, these systems improve the user experience, efficiency and satisfaction. With a growing demand for transparency and understanding of recommendation outputs, explainable recommender systems have gained growing attention in recent years. Additionally, as user reviews could be considered the rationales behind why the user likes (or dislikes) the products, generating informative and reliable reviews alongside recommendations has thus emerged as a research focus in explainable recommendation. However, the model-generated reviews might contain factual inconsistent contents (i.e., the hallucination issue), which would thus compromise the recommendation rationales. To address this issue, we propose a contrastive learning framework to improve the faithfulness and factuality in explainable recommendation in this paper. We further develop different strategies of generating positive and negative examples for contrastive learning, such as back-translation or synonym substitution for positive examples, and editing positive examples or utilizing model-generated texts for negative examples. Our proposed method optimizes the model to distinguish faithful explanations (i.e., positive examples) and unfaithful ones with factual errors (i.e., negative examples), which thus drives the model to generate faithful reviews as explanations while avoiding inconsistent contents. Extensive experiments and analysis on three benchmark datasets show that our proposed model outperforms other review generation baselines in faithfulness and factuality. In addition, the proposed contrastive learning component could be easily incorporated into other explainable recommender systems in a plug-and-play manner.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"24 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Faithfulness and Factuality with Contrastive Learning in Explainable Recommendation\",\"authors\":\"Haojie Zhuang, Wei Zhang, Weitong Chen, Jian Yang, Quan Z. Sheng\",\"doi\":\"10.1145/3653984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recommender systems have become increasingly important in navigating the vast amount of information and options available in various domains. By tailoring and personalizing recommendations to user preferences and interests, these systems improve the user experience, efficiency and satisfaction. With a growing demand for transparency and understanding of recommendation outputs, explainable recommender systems have gained growing attention in recent years. Additionally, as user reviews could be considered the rationales behind why the user likes (or dislikes) the products, generating informative and reliable reviews alongside recommendations has thus emerged as a research focus in explainable recommendation. However, the model-generated reviews might contain factual inconsistent contents (i.e., the hallucination issue), which would thus compromise the recommendation rationales. To address this issue, we propose a contrastive learning framework to improve the faithfulness and factuality in explainable recommendation in this paper. We further develop different strategies of generating positive and negative examples for contrastive learning, such as back-translation or synonym substitution for positive examples, and editing positive examples or utilizing model-generated texts for negative examples. Our proposed method optimizes the model to distinguish faithful explanations (i.e., positive examples) and unfaithful ones with factual errors (i.e., negative examples), which thus drives the model to generate faithful reviews as explanations while avoiding inconsistent contents. Extensive experiments and analysis on three benchmark datasets show that our proposed model outperforms other review generation baselines in faithfulness and factuality. In addition, the proposed contrastive learning component could be easily incorporated into other explainable recommender systems in a plug-and-play manner.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653984\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653984","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improving Faithfulness and Factuality with Contrastive Learning in Explainable Recommendation
Recommender systems have become increasingly important in navigating the vast amount of information and options available in various domains. By tailoring and personalizing recommendations to user preferences and interests, these systems improve the user experience, efficiency and satisfaction. With a growing demand for transparency and understanding of recommendation outputs, explainable recommender systems have gained growing attention in recent years. Additionally, as user reviews could be considered the rationales behind why the user likes (or dislikes) the products, generating informative and reliable reviews alongside recommendations has thus emerged as a research focus in explainable recommendation. However, the model-generated reviews might contain factual inconsistent contents (i.e., the hallucination issue), which would thus compromise the recommendation rationales. To address this issue, we propose a contrastive learning framework to improve the faithfulness and factuality in explainable recommendation in this paper. We further develop different strategies of generating positive and negative examples for contrastive learning, such as back-translation or synonym substitution for positive examples, and editing positive examples or utilizing model-generated texts for negative examples. Our proposed method optimizes the model to distinguish faithful explanations (i.e., positive examples) and unfaithful ones with factual errors (i.e., negative examples), which thus drives the model to generate faithful reviews as explanations while avoiding inconsistent contents. Extensive experiments and analysis on three benchmark datasets show that our proposed model outperforms other review generation baselines in faithfulness and factuality. In addition, the proposed contrastive learning component could be easily incorporated into other explainable recommender systems in a plug-and-play manner.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.