偏移矢量的测地性质和量化

Hua Wang, Kai Chang
{"title":"偏移矢量的测地性质和量化","authors":"Hua Wang, Kai Chang","doi":"arxiv-2405.13355","DOIUrl":null,"url":null,"abstract":"Recently, Xu et al. introduced the concept of an interband character for a\ntime-dependent quantum system. This quantity is gauge invariant and quantized\nas integer values, analogous to the Euler characteristic based on the\nGauss-Bonnet theorem for a manifold with a smooth boundary. In this work, we\nfind that the geometric shift vector in momentum space from shift currents in\nthe bulk photovoltaic effect is equivalent to the quantum geometric potential\nand plays the role of geodesic curvature, that is, of a quantum system whose\nparameter space is the Bloch momentum. We reveal the intricate relationships\namong geometric quantities such as the shift vector, Berry curvature, and\nquantum metric. Additionally, we present the Wilson representation for the\nquantized interband character and extend our analysis to bosonic photon and\nphonon drag shift vectors with non-vertical transitions. The application of\nWilson loop method facilitates first-principles calculations, providing\ninsights into the geometric underpinnings of these interband gauge invariant\nquantities and shedding light on their nonlinear optical manifestations in real\nmaterials.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geodesic nature and quantization of shift vector\",\"authors\":\"Hua Wang, Kai Chang\",\"doi\":\"arxiv-2405.13355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Xu et al. introduced the concept of an interband character for a\\ntime-dependent quantum system. This quantity is gauge invariant and quantized\\nas integer values, analogous to the Euler characteristic based on the\\nGauss-Bonnet theorem for a manifold with a smooth boundary. In this work, we\\nfind that the geometric shift vector in momentum space from shift currents in\\nthe bulk photovoltaic effect is equivalent to the quantum geometric potential\\nand plays the role of geodesic curvature, that is, of a quantum system whose\\nparameter space is the Bloch momentum. We reveal the intricate relationships\\namong geometric quantities such as the shift vector, Berry curvature, and\\nquantum metric. Additionally, we present the Wilson representation for the\\nquantized interband character and extend our analysis to bosonic photon and\\nphonon drag shift vectors with non-vertical transitions. The application of\\nWilson loop method facilitates first-principles calculations, providing\\ninsights into the geometric underpinnings of these interband gauge invariant\\nquantities and shedding light on their nonlinear optical manifestations in real\\nmaterials.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,Xu 等人为依赖时间的量子系统引入了带间特性的概念。这个量是规不变的,并被量化为整数值,类似于基于高斯-波奈定理的具有光滑边界流形的欧拉特性。在这项研究中,我们发现体光电效应中的位移电流在动量空间中的几何位移矢量等价于量子几何势,并扮演着测地曲率的角色,即一个以布洛赫动量为参数空间的量子系统的测地曲率。我们揭示了位移矢量、贝里曲率和量子度量等几何量之间错综复杂的关系。此外,我们还提出了带间量子化特性的威尔逊表示法,并将分析扩展到具有非垂直转变的玻色光子和声子拖曳位移矢量。威尔逊环方法的应用促进了第一原理计算,为这些带间量规不变量的几何基础提供了见解,并揭示了它们在实际材料中的非线性光学表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesic nature and quantization of shift vector
Recently, Xu et al. introduced the concept of an interband character for a time-dependent quantum system. This quantity is gauge invariant and quantized as integer values, analogous to the Euler characteristic based on the Gauss-Bonnet theorem for a manifold with a smooth boundary. In this work, we find that the geometric shift vector in momentum space from shift currents in the bulk photovoltaic effect is equivalent to the quantum geometric potential and plays the role of geodesic curvature, that is, of a quantum system whose parameter space is the Bloch momentum. We reveal the intricate relationships among geometric quantities such as the shift vector, Berry curvature, and quantum metric. Additionally, we present the Wilson representation for the quantized interband character and extend our analysis to bosonic photon and phonon drag shift vectors with non-vertical transitions. The application of Wilson loop method facilitates first-principles calculations, providing insights into the geometric underpinnings of these interband gauge invariant quantities and shedding light on their nonlinear optical manifestations in real materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信