过滤问题的近似中间量自适应调节计划

Iris Rammelmüller, Gottfried Hastermann, Jana de Wiljes
{"title":"过滤问题的近似中间量自适应调节计划","authors":"Iris Rammelmüller, Gottfried Hastermann, Jana de Wiljes","doi":"arxiv-2405.14408","DOIUrl":null,"url":null,"abstract":"Data assimilation algorithms integrate prior information from numerical model\nsimulations with observed data. Ensemble-based filters, regarded as\nstate-of-the-art, are widely employed for large-scale estimation tasks in\ndisciplines such as geoscience and meteorology. Despite their inability to\nproduce the true posterior distribution for nonlinear systems, their robustness\nand capacity for state tracking are noteworthy. In contrast, Particle filters\nyield the correct distribution in the ensemble limit but require substantially\nlarger ensemble sizes than ensemble-based filters to maintain stability in\nhigher-dimensional spaces. It is essential to transcend traditional Gaussian\nassumptions to achieve realistic quantification of uncertainties. One approach\ninvolves the hybridisation of filters, facilitated by tempering, to harness the\ncomplementary strengths of different filters. A new adaptive tempering method\nis proposed to tune the underlying schedule, aiming to systematically surpass\nthe performance previously achieved. Although promising numerical results for\ncertain filter combinations in toy examples exist in the literature, the tuning\nof hyperparameters presents a considerable challenge. A deeper understanding of\nthese interactions is crucial for practical applications.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive tempering schedules with approximative intermediate measures for filtering problems\",\"authors\":\"Iris Rammelmüller, Gottfried Hastermann, Jana de Wiljes\",\"doi\":\"arxiv-2405.14408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data assimilation algorithms integrate prior information from numerical model\\nsimulations with observed data. Ensemble-based filters, regarded as\\nstate-of-the-art, are widely employed for large-scale estimation tasks in\\ndisciplines such as geoscience and meteorology. Despite their inability to\\nproduce the true posterior distribution for nonlinear systems, their robustness\\nand capacity for state tracking are noteworthy. In contrast, Particle filters\\nyield the correct distribution in the ensemble limit but require substantially\\nlarger ensemble sizes than ensemble-based filters to maintain stability in\\nhigher-dimensional spaces. It is essential to transcend traditional Gaussian\\nassumptions to achieve realistic quantification of uncertainties. One approach\\ninvolves the hybridisation of filters, facilitated by tempering, to harness the\\ncomplementary strengths of different filters. A new adaptive tempering method\\nis proposed to tune the underlying schedule, aiming to systematically surpass\\nthe performance previously achieved. Although promising numerical results for\\ncertain filter combinations in toy examples exist in the literature, the tuning\\nof hyperparameters presents a considerable challenge. A deeper understanding of\\nthese interactions is crucial for practical applications.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.14408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据同化算法将数值模型模拟的先验信息与观测数据整合在一起。基于集合的滤波器被认为是最先进的,被广泛用于地球科学和气象学等学科的大规模估算任务。尽管它们无法产生非线性系统的真实后验分布,但其鲁棒性和状态跟踪能力是值得注意的。相比之下,粒子滤波器能在集合极限中产生正确的分布,但与基于集合的滤波器相比,粒子滤波器需要更大的集合规模才能在更高维度的空间中保持稳定。要实现不确定性的现实量化,必须超越传统的高斯假设。其中一种方法涉及滤波器的混合,通过调节来利用不同滤波器的互补优势。我们提出了一种新的自适应调节方法来调整基础时间表,目的是系统地超越以前取得的性能。尽管文献中已经有了在玩具实例中某些滤波器组合的可喜数值结果,但超参数的调整仍是一个相当大的挑战。深入了解这些相互作用对实际应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive tempering schedules with approximative intermediate measures for filtering problems
Data assimilation algorithms integrate prior information from numerical model simulations with observed data. Ensemble-based filters, regarded as state-of-the-art, are widely employed for large-scale estimation tasks in disciplines such as geoscience and meteorology. Despite their inability to produce the true posterior distribution for nonlinear systems, their robustness and capacity for state tracking are noteworthy. In contrast, Particle filters yield the correct distribution in the ensemble limit but require substantially larger ensemble sizes than ensemble-based filters to maintain stability in higher-dimensional spaces. It is essential to transcend traditional Gaussian assumptions to achieve realistic quantification of uncertainties. One approach involves the hybridisation of filters, facilitated by tempering, to harness the complementary strengths of different filters. A new adaptive tempering method is proposed to tune the underlying schedule, aiming to systematically surpass the performance previously achieved. Although promising numerical results for certain filter combinations in toy examples exist in the literature, the tuning of hyperparameters presents a considerable challenge. A deeper understanding of these interactions is crucial for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信