算术级数中的小质数 k 次幂残差和非残差

N. A. Carella
{"title":"算术级数中的小质数 k 次幂残差和非残差","authors":"N. A. Carella","doi":"arxiv-2405.13159","DOIUrl":null,"url":null,"abstract":"Let $p$ be a large odd prime, let $x=(\\log p)^{1+\\varepsilon}$ and let\n$q\\ll\\log\\log p$ be an integer, where $\\varepsilon>0$ is a small number. This\nnote proves the existence of small prime quadratic residues and prime quadratic\nnonresidues in the arithmetic progression $a+qm\\ll x$, with relatively prime\n$1\\leq a<q$, unconditionally. The same results are generalized to small prime\n$k$th power residues and nonresidues, where $k\\mid p-1$ and $k\\ll\\log\\log p$.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Prime $k$th Power Residues and Nonresidues in Arithmetic Progressions\",\"authors\":\"N. A. Carella\",\"doi\":\"arxiv-2405.13159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be a large odd prime, let $x=(\\\\log p)^{1+\\\\varepsilon}$ and let\\n$q\\\\ll\\\\log\\\\log p$ be an integer, where $\\\\varepsilon>0$ is a small number. This\\nnote proves the existence of small prime quadratic residues and prime quadratic\\nnonresidues in the arithmetic progression $a+qm\\\\ll x$, with relatively prime\\n$1\\\\leq a<q$, unconditionally. The same results are generalized to small prime\\n$k$th power residues and nonresidues, where $k\\\\mid p-1$ and $k\\\\ll\\\\log\\\\log p$.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $p$ 是一个大奇素数,让 $x=(\log p)^{1+\varepsilon}$ 并且让 $q\ll\log\log p$ 是一个整数,其中 $\varepsilon>0$ 是一个小数。本注无条件地证明了在算术级数 $a+qm\ll x$ 中存在相对质数$1\leq a本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Small Prime $k$th Power Residues and Nonresidues in Arithmetic Progressions
Let $p$ be a large odd prime, let $x=(\log p)^{1+\varepsilon}$ and let $q\ll\log\log p$ be an integer, where $\varepsilon>0$ is a small number. This note proves the existence of small prime quadratic residues and prime quadratic nonresidues in the arithmetic progression $a+qm\ll x$, with relatively prime $1\leq a
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信