{"title":"算术级数中的小质数 k 次幂残差和非残差","authors":"N. A. Carella","doi":"arxiv-2405.13159","DOIUrl":null,"url":null,"abstract":"Let $p$ be a large odd prime, let $x=(\\log p)^{1+\\varepsilon}$ and let\n$q\\ll\\log\\log p$ be an integer, where $\\varepsilon>0$ is a small number. This\nnote proves the existence of small prime quadratic residues and prime quadratic\nnonresidues in the arithmetic progression $a+qm\\ll x$, with relatively prime\n$1\\leq a<q$, unconditionally. The same results are generalized to small prime\n$k$th power residues and nonresidues, where $k\\mid p-1$ and $k\\ll\\log\\log p$.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Prime $k$th Power Residues and Nonresidues in Arithmetic Progressions\",\"authors\":\"N. A. Carella\",\"doi\":\"arxiv-2405.13159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be a large odd prime, let $x=(\\\\log p)^{1+\\\\varepsilon}$ and let\\n$q\\\\ll\\\\log\\\\log p$ be an integer, where $\\\\varepsilon>0$ is a small number. This\\nnote proves the existence of small prime quadratic residues and prime quadratic\\nnonresidues in the arithmetic progression $a+qm\\\\ll x$, with relatively prime\\n$1\\\\leq a<q$, unconditionally. The same results are generalized to small prime\\n$k$th power residues and nonresidues, where $k\\\\mid p-1$ and $k\\\\ll\\\\log\\\\log p$.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Small Prime $k$th Power Residues and Nonresidues in Arithmetic Progressions
Let $p$ be a large odd prime, let $x=(\log p)^{1+\varepsilon}$ and let
$q\ll\log\log p$ be an integer, where $\varepsilon>0$ is a small number. This
note proves the existence of small prime quadratic residues and prime quadratic
nonresidues in the arithmetic progression $a+qm\ll x$, with relatively prime
$1\leq a