拉普拉斯、格拉斯和维德势变换的新特性及其应用

Abdulhafeez A. Abdulsalam, Ammar K. Mohammed, Hemza Djahel
{"title":"拉普拉斯、格拉斯和维德势变换的新特性及其应用","authors":"Abdulhafeez A. Abdulsalam, Ammar K. Mohammed, Hemza Djahel","doi":"arxiv-2405.14248","DOIUrl":null,"url":null,"abstract":"In this paper, we begin by applying the Laplace transform to derive closed\nforms for several challenging integrals that seem nearly impossible to\nevaluate. By utilizing the solution to the Pythagorean equation $a^2 + b^2 =\nc^2$, these closed forms become even more intriguing. This method allows us to\nprovide new integral representations for the error function. Following this, we\nuse the Fourier transform to derive formulas for the Glasser and Widder\npotential transforms, leading to several new and interesting corollaries. As\npart of the applications, we demonstrate the use of one of these integral\nformulas to provide a new real analytic proof of Euler's reflection formula for\nthe gamma function. Of particular interest is a generalized integral involving\nthe Riemann zeta function, which we also present as an application.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New identities for the Laplace, Glasser, and Widder potential transforms and their applications\",\"authors\":\"Abdulhafeez A. Abdulsalam, Ammar K. Mohammed, Hemza Djahel\",\"doi\":\"arxiv-2405.14248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we begin by applying the Laplace transform to derive closed\\nforms for several challenging integrals that seem nearly impossible to\\nevaluate. By utilizing the solution to the Pythagorean equation $a^2 + b^2 =\\nc^2$, these closed forms become even more intriguing. This method allows us to\\nprovide new integral representations for the error function. Following this, we\\nuse the Fourier transform to derive formulas for the Glasser and Widder\\npotential transforms, leading to several new and interesting corollaries. As\\npart of the applications, we demonstrate the use of one of these integral\\nformulas to provide a new real analytic proof of Euler's reflection formula for\\nthe gamma function. Of particular interest is a generalized integral involving\\nthe Riemann zeta function, which we also present as an application.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.14248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先应用拉普拉斯变换推导出几种具有挑战性的积分的闭包形式,这些积分似乎几乎无法评估。通过利用毕达哥拉斯方程 $a^2 + b^2 =c^2$ 的解,这些闭包形式变得更加引人入胜。通过这种方法,我们可以为误差函数提供新的积分表示。随后,我们利用傅立叶变换推导出格拉瑟变换和维德势变换的公式,并由此得出几个新的有趣推论。作为应用的一部分,我们演示了如何利用其中一个积分公式为欧拉的伽马函数反射公式提供新的实解析证明。特别有趣的是涉及黎曼zeta函数的广义积分,我们也将其作为一个应用来介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New identities for the Laplace, Glasser, and Widder potential transforms and their applications
In this paper, we begin by applying the Laplace transform to derive closed forms for several challenging integrals that seem nearly impossible to evaluate. By utilizing the solution to the Pythagorean equation $a^2 + b^2 = c^2$, these closed forms become even more intriguing. This method allows us to provide new integral representations for the error function. Following this, we use the Fourier transform to derive formulas for the Glasser and Widder potential transforms, leading to several new and interesting corollaries. As part of the applications, we demonstrate the use of one of these integral formulas to provide a new real analytic proof of Euler's reflection formula for the gamma function. Of particular interest is a generalized integral involving the Riemann zeta function, which we also present as an application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信