线性时空变换和卷积定理

Yi-Qiao Xu, Bing-Zhao Li
{"title":"线性时空变换和卷积定理","authors":"Yi-Qiao Xu, Bing-Zhao Li","doi":"arxiv-2405.10990","DOIUrl":null,"url":null,"abstract":"Following the idea of the fractional space-time Fourier transform, a linear\ncanonical space-time transform for 16-dimensional space-time\n$C\\ell_{3,1}$-valued signals is investigated in this paper. First, the\ndefinition of the proposed linear canonical space-time transform is given, and\nsome related properties of this transform are obtained. Second, the convolution\noperator and the corresponding convolution theorem are proposed. Third, the\nconvolution theorem associated with the two-sided linear canonical space-time\ntransform is derived.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"623 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear canonical space-time transform and convolution theorems\",\"authors\":\"Yi-Qiao Xu, Bing-Zhao Li\",\"doi\":\"arxiv-2405.10990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following the idea of the fractional space-time Fourier transform, a linear\\ncanonical space-time transform for 16-dimensional space-time\\n$C\\\\ell_{3,1}$-valued signals is investigated in this paper. First, the\\ndefinition of the proposed linear canonical space-time transform is given, and\\nsome related properties of this transform are obtained. Second, the convolution\\noperator and the corresponding convolution theorem are proposed. Third, the\\nconvolution theorem associated with the two-sided linear canonical space-time\\ntransform is derived.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"623 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.10990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

按照分数时空傅里叶变换的思想,本文研究了 16 维时空$Cell_{3,1}$值信号的线性典型时空变换。首先,给出了所提出的线性规范时空变换的定义,并得到了该变换的一些相关性质。其次,提出了卷积算子和相应的卷积定理。第三,推导出与双面线性规范时空变换相关的卷积定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear canonical space-time transform and convolution theorems
Following the idea of the fractional space-time Fourier transform, a linear canonical space-time transform for 16-dimensional space-time $C\ell_{3,1}$-valued signals is investigated in this paper. First, the definition of the proposed linear canonical space-time transform is given, and some related properties of this transform are obtained. Second, the convolution operator and the corresponding convolution theorem are proposed. Third, the convolution theorem associated with the two-sided linear canonical space-time transform is derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信