原始欧拉砖生成器

Djamel Himane
{"title":"原始欧拉砖生成器","authors":"Djamel Himane","doi":"arxiv-2405.13061","DOIUrl":null,"url":null,"abstract":"The smallest Euler brick, discovered by Paul Halcke, has edges $(177, 44,\n240) $ and face diagonals $(125, 267, 244 ) $, generated by the primitive\nPythagorean triple $ (3, 4, 5) $. Let $ (u,v,w) $ primitive Pythagorean triple,\nSounderson made a generalization parameterization of the edges\n\\begin{equation*} a = \\vert u(4v^2 - w^2) \\vert, \\quad b = \\vert v(4u^2 -\nw^2)\\vert, \\quad c = \\vert 4uvw \\vert \\end{equation*} give face diagonals\n\\begin{equation*} {\\displaystyle d=w^{3},\\quad e=u(4v^{2}+w^{2}),\\quad\nf=v(4u^{2}+w^{2})} \\end{equation*} leads to an Euler brick. Finding other\nformulas that generate these primitive bricks, other than formula above, or\nmaking initial guesses that can be improved later, is the key to understanding\nhow they are generated.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primitive Euler brick generator\",\"authors\":\"Djamel Himane\",\"doi\":\"arxiv-2405.13061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smallest Euler brick, discovered by Paul Halcke, has edges $(177, 44,\\n240) $ and face diagonals $(125, 267, 244 ) $, generated by the primitive\\nPythagorean triple $ (3, 4, 5) $. Let $ (u,v,w) $ primitive Pythagorean triple,\\nSounderson made a generalization parameterization of the edges\\n\\\\begin{equation*} a = \\\\vert u(4v^2 - w^2) \\\\vert, \\\\quad b = \\\\vert v(4u^2 -\\nw^2)\\\\vert, \\\\quad c = \\\\vert 4uvw \\\\vert \\\\end{equation*} give face diagonals\\n\\\\begin{equation*} {\\\\displaystyle d=w^{3},\\\\quad e=u(4v^{2}+w^{2}),\\\\quad\\nf=v(4u^{2}+w^{2})} \\\\end{equation*} leads to an Euler brick. Finding other\\nformulas that generate these primitive bricks, other than formula above, or\\nmaking initial guesses that can be improved later, is the key to understanding\\nhow they are generated.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

保罗-哈尔克(Paul Halcke)发现的最小欧拉砖的边长为 $(177,44,240)$,面对角线为 $(125, 267, 244 )$,由原始毕达哥拉斯三重 $ (3, 4, 5) $ 生成。让$(u,v,w)$原始勾股定理三重边,Sounderson 对边做了广义参数化:a = \vert u(4v^2 - w^2) \vert, \quad b = \vert v(4u^2 -w^2)\vert, \quad c = \vert 4uvw \vert \end{equation*} 给出面对角线(begin{equation*})。{\displaystyle d=w^{3},\quad e=u(4v^{2}+w^{2}),\quadf=v(4u^{2}+w^{2})}\end{equation*} 引出欧拉砖。除上述公式外,找到生成这些原始砖块的其他公式,或者做出可以在以后加以改进的初步猜测,是理解这些砖块是如何生成的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primitive Euler brick generator
The smallest Euler brick, discovered by Paul Halcke, has edges $(177, 44, 240) $ and face diagonals $(125, 267, 244 ) $, generated by the primitive Pythagorean triple $ (3, 4, 5) $. Let $ (u,v,w) $ primitive Pythagorean triple, Sounderson made a generalization parameterization of the edges \begin{equation*} a = \vert u(4v^2 - w^2) \vert, \quad b = \vert v(4u^2 - w^2)\vert, \quad c = \vert 4uvw \vert \end{equation*} give face diagonals \begin{equation*} {\displaystyle d=w^{3},\quad e=u(4v^{2}+w^{2}),\quad f=v(4u^{2}+w^{2})} \end{equation*} leads to an Euler brick. Finding other formulas that generate these primitive bricks, other than formula above, or making initial guesses that can be improved later, is the key to understanding how they are generated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信