论通过高阶部分逼近哈代 Z$ 函数

Yochay Jerby
{"title":"论通过高阶部分逼近哈代 Z$ 函数","authors":"Yochay Jerby","doi":"arxiv-2405.12557","DOIUrl":null,"url":null,"abstract":"Sections of the Hardy $Z$-function are given by $Z_N(t) := \\sum_{k=1}^{N}\n\\frac{cos(\\theta(t)-ln(k) t) }{\\sqrt{k}}$ for any $N \\in \\mathbb{N}$. Sections\napproximate the Hardy $Z$-function in two ways: (a) $2Z_{\\widetilde{N}(t)}(t)$\nis the Hardy-Littlewood approximate functional equation (AFE) approximation for\n$\\widetilde{N}(t) = \\left [ \\sqrt{\\frac{t}{2 \\pi}} \\right ]$. (b) $Z_{N(t)}(t)$\nis Spira's approximation for $N(t) = \\left [\\frac{t}{2} \\right ]$. Spira\nconjectured, based on experimental observations, that, contrary to the\nclassical approximation $(a)$, approximation (b) satisfies the Riemann\nHypothesis (RH) in the sense that all of its zeros are real. We present\ntheoretical justification for Spira's conjecture, via new techniques of\nacceleration of series, showing that it is essentially equivalent to RH itself.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the approximation of the Hardy $Z$-function via high-order sections\",\"authors\":\"Yochay Jerby\",\"doi\":\"arxiv-2405.12557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sections of the Hardy $Z$-function are given by $Z_N(t) := \\\\sum_{k=1}^{N}\\n\\\\frac{cos(\\\\theta(t)-ln(k) t) }{\\\\sqrt{k}}$ for any $N \\\\in \\\\mathbb{N}$. Sections\\napproximate the Hardy $Z$-function in two ways: (a) $2Z_{\\\\widetilde{N}(t)}(t)$\\nis the Hardy-Littlewood approximate functional equation (AFE) approximation for\\n$\\\\widetilde{N}(t) = \\\\left [ \\\\sqrt{\\\\frac{t}{2 \\\\pi}} \\\\right ]$. (b) $Z_{N(t)}(t)$\\nis Spira's approximation for $N(t) = \\\\left [\\\\frac{t}{2} \\\\right ]$. Spira\\nconjectured, based on experimental observations, that, contrary to the\\nclassical approximation $(a)$, approximation (b) satisfies the Riemann\\nHypothesis (RH) in the sense that all of its zeros are real. We present\\ntheoretical justification for Spira's conjecture, via new techniques of\\nacceleration of series, showing that it is essentially equivalent to RH itself.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.12557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.12557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

哈代 Z 元函数的截面由 $Z_N(t) := \sum_{k=1}^{N}\frac{cos(\theta(t)-ln(k) t) }{sqrt{k}}$ 给出,适用于 \mathbb{N}$ 中的任意 $N。各节以两种方式近似哈代 Z 函数:(a)$2Z_{\widetilde{N}(t)}(t)$ 是哈代-利特尔伍德近似函数方程(AFE)对$\widetilde{N}(t) = \left [ \sqrt\frac{t}{2 \pi}} \right ]$ 的近似。(b) $Z_{N(t)}(t)$是斯派拉对 $N(t) = \left [\frac{t}{2} \right ]$ 的近似值。斯派拉根据实验观察推测,与经典近似值 $(a)$ 相反,近似值 (b) 满足黎曼假设(RH),即它的所有零点都是实数。我们通过新的加速数列技术,从理论上证明了斯皮拉的猜想,表明它本质上等同于黎曼假设本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the approximation of the Hardy $Z$-function via high-order sections
Sections of the Hardy $Z$-function are given by $Z_N(t) := \sum_{k=1}^{N} \frac{cos(\theta(t)-ln(k) t) }{\sqrt{k}}$ for any $N \in \mathbb{N}$. Sections approximate the Hardy $Z$-function in two ways: (a) $2Z_{\widetilde{N}(t)}(t)$ is the Hardy-Littlewood approximate functional equation (AFE) approximation for $\widetilde{N}(t) = \left [ \sqrt{\frac{t}{2 \pi}} \right ]$. (b) $Z_{N(t)}(t)$ is Spira's approximation for $N(t) = \left [\frac{t}{2} \right ]$. Spira conjectured, based on experimental observations, that, contrary to the classical approximation $(a)$, approximation (b) satisfies the Riemann Hypothesis (RH) in the sense that all of its zeros are real. We present theoretical justification for Spira's conjecture, via new techniques of acceleration of series, showing that it is essentially equivalent to RH itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信