{"title":"与准线性映射相关的非线性 Dirichlet 形式","authors":"Camelia Beznea, Lucian Beznea, Michael Röckner","doi":"10.1007/s11118-024-10145-5","DOIUrl":null,"url":null,"abstract":"<p>If <span>\\((\\mathcal{E}, \\mathcal{D})\\)</span> is a symmetric, regular, strongly local Dirichlet form on <span>\\(L^2 (X,m)\\)</span>, admitting a carré du champ operator <span>\\(\\Gamma \\)</span>, and <span>\\(p>1\\)</span> is a real number, then one can define a nonlinear form <span>\\(\\mathcal{E}^p\\)</span> by the formula </p><span>$$ \\mathcal{E}^p(u,v) = \\int _{X} \\Gamma (u)^\\frac{p-2}{2} \\Gamma (u,v)dm , $$</span><p>where <i>u</i>, <i>v</i> belong to an appropriate subspace of the domain <span>\\(\\mathcal{D}\\)</span>. We show that <span>\\(\\mathcal{E}^p\\)</span> is a nonlinear Dirichlet form in the sense introduced by P. van Beusekom. We then construct the associated Choquet capacity. As a particular case we obtain the nonlinear form associated with the <i>p</i>-Laplace operator on <span>\\(W_0^{1,p}\\)</span>. Using the above procedure, for each <i>n</i>-dimensional quasiregular mapping <i>f</i> we construct a nonlinear Dirichlet form <span>\\(\\mathcal{E}^n\\)</span> (<span>\\(p=n\\)</span>) such that the components of <i>f</i> become harmonic functions with respect to <span>\\(\\mathcal{E}^n\\)</span>. Finally, we obtain Caccioppoli type inequalities in the intrinsic metric induced by <span>\\(\\mathcal{E}\\)</span>, for harmonic functions with respect to the form <span>\\(\\mathcal{E}^p\\)</span>.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"128 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Dirichlet Forms Associated with Quasiregular Mappings\",\"authors\":\"Camelia Beznea, Lucian Beznea, Michael Röckner\",\"doi\":\"10.1007/s11118-024-10145-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>If <span>\\\\((\\\\mathcal{E}, \\\\mathcal{D})\\\\)</span> is a symmetric, regular, strongly local Dirichlet form on <span>\\\\(L^2 (X,m)\\\\)</span>, admitting a carré du champ operator <span>\\\\(\\\\Gamma \\\\)</span>, and <span>\\\\(p>1\\\\)</span> is a real number, then one can define a nonlinear form <span>\\\\(\\\\mathcal{E}^p\\\\)</span> by the formula </p><span>$$ \\\\mathcal{E}^p(u,v) = \\\\int _{X} \\\\Gamma (u)^\\\\frac{p-2}{2} \\\\Gamma (u,v)dm , $$</span><p>where <i>u</i>, <i>v</i> belong to an appropriate subspace of the domain <span>\\\\(\\\\mathcal{D}\\\\)</span>. We show that <span>\\\\(\\\\mathcal{E}^p\\\\)</span> is a nonlinear Dirichlet form in the sense introduced by P. van Beusekom. We then construct the associated Choquet capacity. As a particular case we obtain the nonlinear form associated with the <i>p</i>-Laplace operator on <span>\\\\(W_0^{1,p}\\\\)</span>. Using the above procedure, for each <i>n</i>-dimensional quasiregular mapping <i>f</i> we construct a nonlinear Dirichlet form <span>\\\\(\\\\mathcal{E}^n\\\\)</span> (<span>\\\\(p=n\\\\)</span>) such that the components of <i>f</i> become harmonic functions with respect to <span>\\\\(\\\\mathcal{E}^n\\\\)</span>. Finally, we obtain Caccioppoli type inequalities in the intrinsic metric induced by <span>\\\\(\\\\mathcal{E}\\\\)</span>, for harmonic functions with respect to the form <span>\\\\(\\\\mathcal{E}^p\\\\)</span>.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10145-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10145-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果 \((\mathcal{E}, \mathcal{D})\) 是 \(L^2 (X,m)\) 上一个对称的、正则的、强局部的 Dirichlet 形式,允许一个 carré du champ 算子 \(\Gamma\),并且 \(p>;1) 是实数,那么我们可以通过公式 $$ \mathcal{E}^p(u,v) = \int _{X} \Gamma (u)^\frac{p-2}{2} 来定义非线性形式 \(\mathcal{E}^p\)\Gamma (u,v)dm , $$where u, v belong to an appropriate subspace of the domain \(\mathcal{D}\)。我们证明了 \(\mathcal{E}^p\) 是 P. van Beusekom 引入的意义上的非线性 Dirichlet 形式。然后我们构建相关的 Choquet 容量。作为一个特例,我们得到了与\(W_0^{1,p}\)上的 p-Laplace 算子相关的非线性形式。利用上述过程,我们可以为每个 n 维准线性映射 f 构造一个非线性 Dirichlet 形式 (p=n),使得 f 的分量成为关于 \(\mathcal{E}^n\) 的谐函数。最后,我们得到了在\(\mathcal{E}\)诱导的本征度量中,关于形式\(\mathcal{E}^p\)的谐函数的卡奇奥波利式不等式。
Nonlinear Dirichlet Forms Associated with Quasiregular Mappings
If \((\mathcal{E}, \mathcal{D})\) is a symmetric, regular, strongly local Dirichlet form on \(L^2 (X,m)\), admitting a carré du champ operator \(\Gamma \), and \(p>1\) is a real number, then one can define a nonlinear form \(\mathcal{E}^p\) by the formula
where u, v belong to an appropriate subspace of the domain \(\mathcal{D}\). We show that \(\mathcal{E}^p\) is a nonlinear Dirichlet form in the sense introduced by P. van Beusekom. We then construct the associated Choquet capacity. As a particular case we obtain the nonlinear form associated with the p-Laplace operator on \(W_0^{1,p}\). Using the above procedure, for each n-dimensional quasiregular mapping f we construct a nonlinear Dirichlet form \(\mathcal{E}^n\) (\(p=n\)) such that the components of f become harmonic functions with respect to \(\mathcal{E}^n\). Finally, we obtain Caccioppoli type inequalities in the intrinsic metric induced by \(\mathcal{E}\), for harmonic functions with respect to the form \(\mathcal{E}^p\).
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.