利用自然语言处理中的语料库研究跨语言影响

Q1 Arts and Humanities
Yitao Liu , Mark Dras
{"title":"利用自然语言处理中的语料库研究跨语言影响","authors":"Yitao Liu ,&nbsp;Mark Dras","doi":"10.1016/j.amper.2024.100174","DOIUrl":null,"url":null,"abstract":"<div><p>Language transfer or crosslinguistic influence (CLI), referring to the influence of an L1 on the learning of an L2, is a significant aspect of Second Language Acquisition (SLA). Much work in this area is data-driven, and consequently, large L2 corpora have been constructed for use in CLI analyses. The field of Natural Language Processing, and in particular the specific task of Grammatical Error Correction (GEC), also has corpora that can be of use in these kinds of analyses. In this paper, we take the FCE corpus, a popular dataset of English as a Second Language (ESL) learner texts used for Grammatical Error Correction model training, and use it to analyse the relationship between the distributions of errors and the first languages of the ESL learners. We carry out a detailed analysis of three error types, and demonstrate that the errors made by ESL learners have a statistically significant relationship with linguistic characteristics of their first languages, suggesting the existence of both positive and negative transfer. The analysis aligns with results from the SLA literature, and validates the use of GEC corpora for use in CLI analysis.</p></div>","PeriodicalId":35076,"journal":{"name":"Ampersand","volume":"12 ","pages":"Article 100174"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215039024000122/pdfft?md5=76c8c965fe713f8fb88e5d44c793c113&pid=1-s2.0-S2215039024000122-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using corpora from Natural Language Processing for investigating crosslinguistic influence\",\"authors\":\"Yitao Liu ,&nbsp;Mark Dras\",\"doi\":\"10.1016/j.amper.2024.100174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Language transfer or crosslinguistic influence (CLI), referring to the influence of an L1 on the learning of an L2, is a significant aspect of Second Language Acquisition (SLA). Much work in this area is data-driven, and consequently, large L2 corpora have been constructed for use in CLI analyses. The field of Natural Language Processing, and in particular the specific task of Grammatical Error Correction (GEC), also has corpora that can be of use in these kinds of analyses. In this paper, we take the FCE corpus, a popular dataset of English as a Second Language (ESL) learner texts used for Grammatical Error Correction model training, and use it to analyse the relationship between the distributions of errors and the first languages of the ESL learners. We carry out a detailed analysis of three error types, and demonstrate that the errors made by ESL learners have a statistically significant relationship with linguistic characteristics of their first languages, suggesting the existence of both positive and negative transfer. The analysis aligns with results from the SLA literature, and validates the use of GEC corpora for use in CLI analysis.</p></div>\",\"PeriodicalId\":35076,\"journal\":{\"name\":\"Ampersand\",\"volume\":\"12 \",\"pages\":\"Article 100174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2215039024000122/pdfft?md5=76c8c965fe713f8fb88e5d44c793c113&pid=1-s2.0-S2215039024000122-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ampersand\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215039024000122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ampersand","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215039024000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

语言迁移或跨语言影响(CLI)是指 L1 对 L2 学习的影响,是第二语言习得(SLA)的一个重要方面。该领域的许多工作都是由数据驱动的,因此,已经建立了大量的 L2 语料库,用于 CLI 分析。自然语言处理领域,尤其是语法纠错(GEC)这一特定任务,也拥有可用于此类分析的语料库。在本文中,我们使用 FCE 语料库--一个用于语法纠错模型训练的英语作为第二语言(ESL)学习者文本的流行数据集--来分析错误分布与 ESL 学习者第一语言之间的关系。我们对三种错误类型进行了详细分析,结果表明,ESL 学习者所犯的错误与其母语的语言特点有显著的统计学关系,表明存在正负迁移。该分析与 SLA 文献的结果一致,并验证了在 CLI 分析中使用 GEC 语料库的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using corpora from Natural Language Processing for investigating crosslinguistic influence

Language transfer or crosslinguistic influence (CLI), referring to the influence of an L1 on the learning of an L2, is a significant aspect of Second Language Acquisition (SLA). Much work in this area is data-driven, and consequently, large L2 corpora have been constructed for use in CLI analyses. The field of Natural Language Processing, and in particular the specific task of Grammatical Error Correction (GEC), also has corpora that can be of use in these kinds of analyses. In this paper, we take the FCE corpus, a popular dataset of English as a Second Language (ESL) learner texts used for Grammatical Error Correction model training, and use it to analyse the relationship between the distributions of errors and the first languages of the ESL learners. We carry out a detailed analysis of three error types, and demonstrate that the errors made by ESL learners have a statistically significant relationship with linguistic characteristics of their first languages, suggesting the existence of both positive and negative transfer. The analysis aligns with results from the SLA literature, and validates the use of GEC corpora for use in CLI analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ampersand
Ampersand Arts and Humanities-Language and Linguistics
CiteScore
1.60
自引率
0.00%
发文量
9
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信