{"title":"利用多台机床上的迁移学习,减少预测受概念漂移影响的铣削稳定性的实验工作量","authors":"","doi":"10.1016/j.cirp.2024.04.084","DOIUrl":null,"url":null,"abstract":"<div><p>Due to complex interrelations between the characteristics of the machine tool, spindle, tool wear and the stability of milling processes, the design of stable machining operations is challenging. Concept drift resulting from, e.g., tool wear and different dynamic behaviours often require fundamental experimental investigations on each machining centre. This paper presents a methodology for modelling process characteristics with respect to resource constraints by transferring insights from extensive experiments conducted on a reference machine to other machine tools in a process-informed manner. This methodology was exemplarily applied to predict wear-dependent process stabilities with a significantly reduced number of required cutting tests.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 301-304"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000970/pdfft?md5=723e40598194ca97734b61700e3720c8&pid=1-s2.0-S0007850624000970-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reduction of experimental efforts for predicting milling stability affected by concept drift using transfer learning on multiple machine tools\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to complex interrelations between the characteristics of the machine tool, spindle, tool wear and the stability of milling processes, the design of stable machining operations is challenging. Concept drift resulting from, e.g., tool wear and different dynamic behaviours often require fundamental experimental investigations on each machining centre. This paper presents a methodology for modelling process characteristics with respect to resource constraints by transferring insights from extensive experiments conducted on a reference machine to other machine tools in a process-informed manner. This methodology was exemplarily applied to predict wear-dependent process stabilities with a significantly reduced number of required cutting tests.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 301-304\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000970/pdfft?md5=723e40598194ca97734b61700e3720c8&pid=1-s2.0-S0007850624000970-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000970\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000970","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Reduction of experimental efforts for predicting milling stability affected by concept drift using transfer learning on multiple machine tools
Due to complex interrelations between the characteristics of the machine tool, spindle, tool wear and the stability of milling processes, the design of stable machining operations is challenging. Concept drift resulting from, e.g., tool wear and different dynamic behaviours often require fundamental experimental investigations on each machining centre. This paper presents a methodology for modelling process characteristics with respect to resource constraints by transferring insights from extensive experiments conducted on a reference machine to other machine tools in a process-informed manner. This methodology was exemplarily applied to predict wear-dependent process stabilities with a significantly reduced number of required cutting tests.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.