整合多模态数据和可解释人工智能,对制造过程进行根本原因分析

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
{"title":"整合多模态数据和可解释人工智能,对制造过程进行根本原因分析","authors":"","doi":"10.1016/j.cirp.2024.04.014","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, the growing complexities of manufacturing processes and systems make it difficult to identify the root causes of critical deviations in performance. Conventional methods often fall short in capturing the multifaceted nature of these challenges, despite a wealth of diverse untapped manufacturing data. To harness the full potential of diverse data sets and transform them into a valuable asset to guide root cause exploration, this paper presents an innovative approach that combines multimodal predictive analysis and explainable artificial intelligence (XAI) to uncover insights into system dynamics. This work contributes to a paradigm shift in industrial decision-making regarding manufacturing diagnostics.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 365-368"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000283/pdfft?md5=887520c869ffd3c0e0c45364aae5556d&pid=1-s2.0-S0007850624000283-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integration of multimodal data and explainable artificial intelligence for root cause analysis in manufacturing processes\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, the growing complexities of manufacturing processes and systems make it difficult to identify the root causes of critical deviations in performance. Conventional methods often fall short in capturing the multifaceted nature of these challenges, despite a wealth of diverse untapped manufacturing data. To harness the full potential of diverse data sets and transform them into a valuable asset to guide root cause exploration, this paper presents an innovative approach that combines multimodal predictive analysis and explainable artificial intelligence (XAI) to uncover insights into system dynamics. This work contributes to a paradigm shift in industrial decision-making regarding manufacturing diagnostics.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 365-368\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000283/pdfft?md5=887520c869ffd3c0e0c45364aae5556d&pid=1-s2.0-S0007850624000283-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000283\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000283","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

如今,制造流程和系统日益复杂,导致难以确定性能出现重大偏差的根本原因。尽管有大量尚未开发的各种制造数据,但传统方法往往无法捕捉到这些挑战的多面性。为了充分利用各种数据集的潜力,并将其转化为指导根本原因探索的宝贵财富,本文介绍了一种结合多模态预测分析和可解释人工智能(XAI)的创新方法,以揭示对系统动态的见解。这项工作有助于改变有关制造诊断的工业决策模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of multimodal data and explainable artificial intelligence for root cause analysis in manufacturing processes

Nowadays, the growing complexities of manufacturing processes and systems make it difficult to identify the root causes of critical deviations in performance. Conventional methods often fall short in capturing the multifaceted nature of these challenges, despite a wealth of diverse untapped manufacturing data. To harness the full potential of diverse data sets and transform them into a valuable asset to guide root cause exploration, this paper presents an innovative approach that combines multimodal predictive analysis and explainable artificial intelligence (XAI) to uncover insights into system dynamics. This work contributes to a paradigm shift in industrial decision-making regarding manufacturing diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信